Identifying Karst Aquifer Recharge Area Using Environmental Stable Isotopes and Hydrochemical Data: A Case Study in Nusa Penida Island
Abstract
Identifying the recharge area of karst aquifers is scientifically challenging due to the complexity of karst groundwater flow characteristics. It is essential to identify the recharge zones to conserve the groundwater resources contained within these aquifers. This paper proposes a combined methods for identifying recharge area of karst aquifers on Nusa Penida Island using stable isotopes (18O and 2H) and a hydrogeochemical approach. Based on the analysis of δ18O and δ2H values and their spatial distribution, it is possible to retrace karst aquifer recharge areas using average isotope elevations. In the meantime, groundwater facies will be determined in the karst region of Nusa Penida using the hydrogeochemical approach with the Piper diagram. According to the calculation of water stable isotope results, the average elevation of the groundwater recharge area at the study site is between 62 - 450 meters. If applied to the location of the study, the recharge area is almost entirely distributed across Nusa Penida. In addition, based on the hydrogeochemical analysis, the groundwater type at the study site can be divided into three categories: Na-Cl, mixed, and Mg-HCO3. The water types indicate that the groundwater in Nusa Penida comes from a combination of old water stored from its internal geological formations and mix with modern rainwater.
References
[2] Adomako, D., P. Maloszewski, C. Stumpp, S. Osae, and T. T. Akiti. 2010. Estimating Groundwater Recharge from Water Isotope (Δ2H, Δ18O) Depth Profiles in the Densu River Basin, Ghana. Hydrological Sciences Journal 55 (8): 1405–16. DOI: https://doi.org/10.1080/02626667.2010.527847
[3] Ala-aho, P., C. Soulsby, O. S. Pokrovsky, S. N. Kirpotin, J. Karlsson, S. Serikova, S. N. Vorobyev, R. M. Manasypov, S. Loiko, and D. Tetzlaff. 2018. Using Stable Isotopes to Assess Surface Water Source Dynamics AndHydrological Connectivity In A High-Latitude Wetland and Permafrost Influenced Landscape. Journal of Hydrology 556: 279–93.DOI: https://doi.org/10.1016/j.jhydrol.2017.11.024
[4] Andreo, Bartolomé, J M Vías, Juan José Durán, Pablo Jiménez, J A López-Geta, and Francisco Carrasco. 2008. Methodology for Groundwater Recharge Assessment in Carbonate Aquifers: Application to Pilot Sites in Southern Spain. Hydrogeology Journal 16 (5): 911–25. DOI: https://doi.org/10.1007/s10040-008-0274-5
[5] Anonim. 2014. Laporan Akhir Pekerjaan Pembuatan Peta Zonasi Pemanfaatan Air Tanah Provinsi Bali Tahun Anggaran 2014. Kota Denpasar. (in Indonesian)
[6] Ardana, Putu, Wayan Redana, Mawiti Yekti, and Nengah Simpen. 2022. The Stable Isotopes Approach as Tracers to Investigate the Origin of Groundwater In The Unconfined Aquifer of Denpasar, Bali. Acta Montanistica Slovaca 27 (4): 968–81.
[7] Babaye, Maman Sani Abdou, Philippe Orban, Boureisma Ousmane, Guillaume Favreau, Serge Brouyère, and Alain Dassargues. 2018. Characterization of Recharge Mechanisms in a Precambrian Basement Aquifer in Semi-Arid South-West Niger. Hydrogeology Journal 27 (2): 475–91. DOI: https://doi.org/10.1007/s10040-018-1799-x
[8] Badan Pusat Statistik Kabupaten Klungkung. 2021. “Kecamatan Nusa Penida Dalam Angka 2021.” Semarapura. (in Indonesian)
[9] Belgaman, Halda A., Kimpei Ichiyanagi, Masahiro Tanoue, and Rusmawan Suwarman. 2016. Observational Research on Stable Isotopes in Precipitation over Indonesian Maritime Continent. Journal of Japanese Association of Hydrological Sciences 46 (1): 7–28. DOI: https://doi.org/10.4145/jahs.46.7
[10] Boronina, Anastasia, Werner Balderer, Philippe Renard, and Willibald Stichler. 2005. Study of Stable Isotopes in the Kouris Catchment (Cyprus) for the Description of the Regional Groundwater Flow. Journal of Hydrology 308 (1): 214–26. https://doc.rero.ch/record/5926/files/Boronina_Anastasia_-_Study_of_stable_isotopes_in_the_Kouris_20060901.pdf
[11] Carucci, Valentina, Marco Petitta, and Ramon Aravena. 2012. Interaction between Shallow and Deep Aquifers in the Tivoli Plain (Central Italy) Enhanced by Groundwater Extraction: A Multi-Isotope Approach and Geochemical Modeling. Applied Geochemistry 27 (1): 266–80. DOI:https://doi.org/10.1016/j.apgeochem.2011.11.007
[12] Chen, Zhao, Andreas Hartmann, Thorsten Wagener, and Nico Goldscheider. 2018. Dynamics of Water Fluxes and Storages in an Alpine Karst Catchment under Current and Potential Future Climate Conditions. Hydrology and Earth System Sciences 22 (7): 3807–23. DOI: https://doi.org/10.5194/hess-22-3807-2018
[13] Craig, Harmon. 1961. Isotopic Variations in Meteoric Waters. Science 133: 1702–3.
[14] Eriksson, E. 1983. “Stable Isotopes and Tritium in Precipitation, Guide Book on Nuclear Techniques in Hydrology.” Vienna.
[15] Ford, D. C., and Paul Williams. 1992. Karst Geomorphology and Hydrology. London: Chapman and Hall.
[16] Gat, J.R., and R. Gonfiantini. 1981. “Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle.” Vienna. https://inis.iaea.org/collection/NCLCollectionStore/_Public/13/677/13677657.pdf%0Ahttp://www.gm.univ-montp2.fr/spip/IMG/pdf/2001_Pierret_alGCA.pdf
[17] González-Trinidad, Julián, Anuard Pacheco-Guerrero, H E Júnez-Ferreira, Carlos Bautista-Capetillo, and Arturo Hernández-Antonio. 2017. Identifying Groundwater Recharge Sites through Environmental Stable Isotopes in an Alluvial Aquifer. Water 9 (8): 569. DOI: https://doi.org/10.3390/w9080569
[18] Harmayani, Kadek Diana, Gede Made Konsukartha, and I Gusti Ngurah Kerta Arsana. 2017. Analisis Potensi Sumber Daya Air Di Nusa Penida. Seminar Nasional Sains Dan Teknologi, 1–8. (in Indonesian)
[19] Hartmann, A., N. Goldscheider, T. Wagener, J. Lange, and M. Weiler. 2014. Karst Water Resources in a Changing World: Review of Hydrological Modeling Approaches. Reviews of Geophysics 52: 218–42. DOI:https://doi.org/10.1029/88EO01108
[20] Hofmann, Harald, Dean Newborn, Ian Cartwright, Dioni I Cendón, and Matthias Raiber. 2020. Groundwater Mean Residence Times of a Subtropical Barrier Sand Island. Hydrology and Earth System Sciences 24 (3): 1293–1318.DOI: https://doi.org/10.5194/hess-24-1293-2020
[21] Iacurto, Silvia, Gerardo Grelle, Francesco Maria De Filippi, and Giuseppe Sappa. 2020. Karst Spring Recharge Areas and Discharge Relationship by Oxygen-18 and Deuterium Isotopes Analyses: A Case Study in Southern Latium Region, Italy. Applied Sciences 10 (5). DOI: https://doi.org/10.3390/app10051882
[22] International Atomic Energy Agency. 1981. “Stable Isotope Hydrology : Deuterium and Oxygen-18 in the Water Cycle.” Vienna.
[23] Kehew, A. E. 2001. Applied Chemical Hydrogeology. New Jersey: Prentice Hall.
[24] Khaska, Mahmoud, J Lancelot, Aster Team, Amad Mohamad, Patrick Verdoux, Aurélie Noret, and Roland Simler. 2013. Origin of Groundwater Salinity (Current Seawater vs. Saline Deep Water) in a Coastal Karst Aquifer Based on Sr and Cl Isotopes. Case Study of the La Clape Massif (Southern France). Applied Geochemistry 37: 212–27. DOI: https://doi.org/10.1016/j.apgeochem.2013.07.006
[25] Liebundgut, C., P. Maloszewski, and C. Kulss. 2009. Tracer in Hydrology. 1st ed. Chichester, UK: Wiley-Blackwell.
[26] Love, Andrew J, Andrew L Herczeg, F W Leaney, M F Stadter, J C Dighton, and Don Armstrong. 1994. “Groundwater Residence Time and Palaeohydrology in the Otway Basin, South Australia: 2H, 18O and 14C Data.” Journal of Hydrology 153 (1–4): 157–87. DOI: https://doi.org/10.1016/0022-1694(94)90190-2
[27] Ma, Jinzhu, Ding Li, Jiawu Zhang, W. M. Edmunds, and C. Prudhomme. 2003. Groundwater Recharge and Climatic Change During the Last 1000 Years From Unsaturated Zone of SE Badain Jaran Desert. Chinese Science Bulletin 48 (14): 1469–74. DOI: https://doi.org/10.1360/02wd0262
[28] Ma, Jinzhu, W. Mike Edmunds, Jianhua He, and Bing Jia. 2009. A 2000 Year Geochemical Record of Palaeoclimate and Hydrology Derived From Dune Sand Moisture. Palaeogeography, Palaeoclimatology, Palaeoecology 276 (1–4): 38–46. DOI: https://doi.org/10.1016/j.palaeo.2009.02.028
[29] Majumder, Ratan K, Abdul Halim, Bidyut Baran Saha, Reo Ikawa, Toshio Nakamura, Makoto Kagabu, and Jun Shimada. 2011. Groundwater Flow System in Bengal Delta, Bangladesh Revealed by Environmental Isotopes. Environmental Earth Sciences 64 (5): 1343–52. DOI: https://doi.org/10.1007/s12665-011-0959-2
[30] Mohammadzadeh, Hossein, and Mojtaba Heydarizad. 2020. A Conceptual Model for Water Resources Circulation Patterns in Andarokh-Kardeh Region (NE, Iran). Geochemistry 80 (2): 125593. DOI:https://doi.org/10.1016/j.chemer.2019.125593
[31] Mudiana, Wayan, and Hendri Setiadi. 2008. Peta Sebaran Cekungan Air Tanah Pulau Bali. Bandung.
[32] Pu, Tao, Yuanqing He, Tao Zhang, Jinkui Wu, Guofeng Zhu, and Li Chang. 2013. Isotopic and Geochemical Evolution of Ground and River Waters in a Karst Dominated Geological Setting: A Case Study From Lijiang Basin, South-Asia Monsoon Region. Applied Geochemistry 33: 199–212. DOI:https://doi.org/10.1016/j.apgeochem.2013.02.013
[33] Purbo-Hadiwidjojo, M.M., H Samodra, and T.C. Amin. 1998. Peta Geologi Lembar Bali, Nusa Tenggara. Bandung. (in Indonesian)
[34] Qian, Hui, Jianhua Wu, Yahong Zhou, and Peiyue Li. 2013. Stable Oxygen and Hydrogen Isotopes As Indicators of Lake Water Recharge and Evaporation in The Lakes of The Yinchuan Plain. Hydrological Processes 28 (10): 3554–62. DOI: https://doi.org/10.1002/hyp.9915
[35] Richards, Laura A, Daniel Magnone, Adrian J Boyce, Maria J Casanueva-Marenco, Bart E van Dongen, Christopher J Ballentine, and David A Polya. 2018. Delineating Sources of Groundwater Recharge in an Arsenic-Affected Holocene Aquifer in Cambodia Using Stable Isotope-Based Mixing Models. Journal of Hydrology 557: 321–34. DOI: https://doi.org/https://doi.org/10.1016/j.jhydrol.2017.12.012
[36] Sappa, Giuseppe, Stefania Vitale, and Flavia Ferranti. 2018. Identifying Karst Aquifer Recharge Areas Using Environmental Isotopes : A Case Study in Central Italy. Geosciences 8: 1–15. DOI:https://doi.org/10.3390/geosciences8090351
[37] Sedana, I Wayan. 2016. Inventarisasi Potensi Sumberdaya Lahan Untuk Perencanaan Pengembangan Wilayah Di Kecamatan Nusa Penida Kab. Klungkung. Denpasar. https://simdos.unud.ac.id/uploads/file_penelitian_1_dir/12538427caabf269cc0adadafef82db1.pdf (in Indonesian)
[38] Setiawan, Taat, Soeharti Isnaini, Novi M.A. Asghaf, and Idham Effendi. 2018. Sistem Imbuhan Air Tanah Daerah Karst Wonosari – Baron, Kabupaten Gunungkidul, Daerah Istimewa Yogyakarta Berdasarkan Analisis Isotop 18 Dan 2H. Jurnal Lingkungan Dan Bencana Geologi 9 (3): 143–55. (in Indonesian)
[39] Shi, Mengyu, Shengjie Wang, Athanassios A. Argiriou, Mingjun Zhang, Rong Guo, Rong Jiao, Jingjing Kong, Yaning Zhang, Xue Qiu, and Su’e Zhou. 2019. Stable Isotope Composition in Surface Water in the Upper Yellow River in Northwest China. Water 11 (5): 1–10.DOI: https://doi.org/10.3390/w11050967
[40] Sidle, W. C. 1998. Environmental Isotopes for Resolution of Hydrology Problems. Environmental Monitoring and Assessment 52 (3): 389–410. DOI: https://doi.org/10.1023/A:1005922029958
[41] Sprenger, C, S Parimala Renganayaki, Michael Schneider, and Lakshmanan Elango. 2014. Hydrochemistry and Stable Isotopes during Salinity Ingress and Refreshment in Surface- and Groundwater from the Arani–Koratallai (A–K) Basin North of Chennai (India). Environmental Earth Sciences 73(12): 7769–80. DOI:https://doi.org/10.1007/s12665-014-3269-7
[42] Sudadi, P., H. Setiadi, B.R. Denny, Salahudin Arief, S. Ruchijat, and S Hadi. 1986. Peta Hidrogeologi Lembar Pulau Bali. Bandung. (in Indonesian)
[43] Sudipa, Nyoman, Made Sudiana Mahendra, Wayan Sandi Adnyana, and Ida Bagus Pujaastawa. 2020. Daya Dukung Air Di Kawasan Pariwisata Nusa Penida, Bali. Jurnal Sumberdaya Alam Dan Lingkungan 7 (3): 117–23. https://doi.org/10.21776/ub.jsal.2020.007.03.4 (in Indonesian)
[44] Suganda, Bombom Rachmat, Wahyudi Yusuf, Mochamad Nursiyam Barkah, Yandri Sunarie, and M Sapari Dwi Hadian. 2021. Engineering , Environment , and Technology Shallow Aquifer Groundwater Facies at Multiple Landuse Sites in Manglayang Volcanic Area , Jatinangor and Surroundings , Indonesia. Journal of Geoscience, Environment, and Technology 6 (1): 120–26. DOI: https://doi.org/10.25299/jgeet.2021.6.2.3315
[45] Wang, Shengjie, Mingjun Zhang, Catherine E. Hughes, Xiaofan Zhu, Lei Dong, Zhengguo Ren, and Fenli Chen. 2016. Factors Controlling Stable Isotope Composition of Precipitation in Arid Conditions: An Observation Network in The Tianshan Mountains, Central Asia. Tellus, Series B: Chemical and Physical Meteorology 68 (1). DOI: https://doi.org/10.3402/tellusb.v68.26206
[46] Wei, Guoxiao, Fahu Chen, Jinzhu Ma, Yang Dong, Gaofeng Zhu, and W Mike Edmunds. 2014. Groundwater Recharge and Evolution of Water Quality in China’s Jilantai Basin Based on Hydrogeochemical and Isotopic Evidence. Environmental Earth Sciences 72 (9): 3491–3506. DOI:https://doi.org/10.1007/s12665-014-3257-y
[47] Zhang, Mingjun, and Shengjie Wang. 2016. A Review of Precipitation Isotope Studies in China: Basic Pattern and Hydrological Process. Journal of Geographical Sciences 26 (7): 921–38. DOI:https://doi.org/10.1007/s11442-016-1307-y
[48] Zuppi, Gian Maria, and Elisa Sacchi. 2004. Dynamic Processes in the Venice Region Outlined by Environmental Isotopes. Isotopes in Environmental and Health Studies 40 (1): 35–44. DOI:https://doi.org/10.1080/10256010310001652007
Copyright© 2024 The Author(s). Published by ASERS Publishing 2024. This is an open access article distributed under the terms of CC-BY 4.0 license.