Interrelationships of Air Canal Adaptation in the Leaves of Water Lilies and Water Depth of Lebak Swampland in Kalimantan Selatan
Abstract
Nymphaea pubescens grows in Lebak swampland in its different levels of water depth. This aquatic plant has an absorption system that moves gases through the laminae and has a convective flow system through air canals in midrib and petiole. This study aims to determine the adaptive structure of air canal in the water lilies (Nymphaea pubescens) laminae and how its structure varies along with water-depth fluctuations. The research was conducted by observing plants in 4 (four) different zones of water depth: (1) water depth between 28-95 cm (zone I), (2) 28-99 cm (zone II), (3) 54-112 cm (zone III), and (4) 55-124 cm (zone IV).
Every lamina area, lamina thickness, and cross-sectional area (XS) of petiole, a number and area of air canals in midrib and petiole were collected for analysis. The results showed that the cross-sectional area of the laminae N. pubescens increased along with water depth, but the correlation with laminae thickness decreased. The midrib air canals are symmetrically divided and there was one main canal pair, an additional three pairs of canals, and a pair of smaller canals.
The cross-sectional area of the midrib and air canal increased along with water depth. The calculation of the area of four pairs of air canals is 75%. Air canals make up 34% of midrib cross-sectional area. The midrib air canals produced one pair of air canals, an additional two pairs of canals and a pair of smaller canals. The calculation of the area of three pairs of airways is 93%. Air canals make up 31% of the cross-sectional area of the petiole. The length of the petiole, the volume of the petiole, and the volume of the air canal increased along with water depth, but the cross-sectional area of the petiole and the air canal were not related by water depth.
References
[2] Albuquerque, A., Randerson, P. and Białowiec, A. 2020. Oxygen transfer capacity as a measure of water aeration by floating reed plants: Initial laboratory studies. Prosesses 1-8, 1270. DOI: 10.3390/pr8101270
[3] Armstrong, J.W. et al. 1996. Pathways of aeration and the mechanisms and beneficial effects of humidity and venturi-induced convections in Phragmites australis (Cav.) Trin. ex Steud. Aquat. Bot., 54: 177-197. DOI:https://doi.org/10.1016/0304-3770(96)01044-3
[4] Armstrong, W. 1979. Aeration in Higher Plants. In: Woolhouse HW (Editor). Adv. Bot. Res. 7. Academic Press, London 226-332 pp.
[5] Badan Pusat Statistik Kabupaten Hulu Sungai Utara (BPS-HSU). 2020. Kecamatan Sungai Pandan dalam Angka 2020. Available at: https://hulusungaiutarakab.bps.go.id/publication.html (in Indonesian).
[6] Bakshi, A., Shemansky, J.M., Chang, C. and Binder, B.M. 2015. History of research on the plant hormone ethylene. J. Plant Growth Regul., 34: 809–827.
[7] Binder, B.M. 2020. Etylene signaling in Plants. J. Biol. Chem., 295(22): 7710-7725. DOI:10.1074/jbc.REV120.010854
[8] Chen, F. et al. 2017. Water lilies as emerging models for Darwin’s abominable mystery. Hortic. Res., 4. DOI:10.1038/hortres.2017.51
[9] Colmer, T.D. 2003. Long-distance transport of gases in plants: A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ., 26(1): 17-36.
[10] Conard, H.S. 1905. The waterlilies: A monograph of the waterlilies. The Carnegie Institution of Washington. Baltimore, Maryland, USA.
[11] Cookson, C. and Osborne, D.J. 1978. The stimulation of cell extension by ethylene and auxin in aquatic plants. Planta, 144(1) 39-47. DOI: 10.1007/bf00385005
[12] Cronk, J.K. and Fennessy, M.S. 2001. Wetland plants: biology and ecology. Washington, New York. Lewis Publishers 462 p.
[13] Dacey, J.W.H. and Klug, M.J. 1979. Methane efflux from lake sediments through water lilies. Science, 203: 1253-1254.
[14] Dacey, J.W.H. and Klug, M.J. 1982a. Tracer studies of gas circulation in Nuphar: 18 O2 and 14 CO2 transport. Physiol. Plant, 56: 362-366.
[15] Dacey, J.W.H. and Klug, M.J. 1982b. Ventilation by floating leaves in Nuphar. Amer. J. Bot., 69(6): 999-1003.
[16] Dacey, J.W.H. 1980. Internal winds in water lilies: An adaptation for life in anaerobic Sediments. Sience, 210: 1017-1019.
[17] Dacey, J.W.H. 1981. Pressurized ventilation in the yellow waterlily. Ecology, 62(5): 1137-1147.
[18] Dubois, M., van den Broeck, L. and Inzé, D. 2018. The pivotal role of ethylene in plant growth. Trends Plant Sci., 23(4): 311–323. DOI: 10.1016/j.tplants.2018.01.003
[19] Etnier, S.A. and Villani, P.J. 2007. Differences in mechanical and structural properties of surface and aerial petioles of the aquatic plant Nymphaea odorata subsp. Tuberosa (Nymphaeaceae). Amer. J. Bot., 94(7): 1067-1072. DOI: https://doi.org/ 10.3732/ajb.94.7.1067
[20] Eugeniusz, R., Spiewakowski, Piasecki, J. and Wielica, M. 1985. Morphological and anatomical changes in the petioles of Nymphaea alba L. and Nuphar luteum (L.) Sm. caused by oscillations of the water level in lakes. Acta Soc. Bot. Pol., 54(4): 351-359.
[21] Fahmi, A. and Wakhid, N. 2017. Karakteristik lahan rawa. In: Agroekologi rawa. IAARD. Press. 678p. (in Indonesian).
[22] Fatah, L. et al. 2017. Lahan rawa lebak: Sistem pertanian dan pengembangannya. IAARD Press 381 p. in Indonesian).
[23] Ford, K.A. and Champion, P.B. 2019. Flora of New Zealand: Seed plants Nymphaeales. Manaaki Whenue Press.
[24] Grace, J.B. 1989. Effects of water depth on Typha latifolia and Typha domingensis. Amer. J. Bot., 76(5): 762-768.
[25] Grosse, W., Büchel, H.B. and Tiebel, H. 1991. Pressurized ventilation in wetland plants. Aquat. Bot., 39: 89-98.
[26] Grosse, W. and Mevi-Schutz, J. 1987. A beneficial gas transport system in Nymphoides peltata. Amer. J. Bot., 74: 947-952.
[27] Große, W. 1996. Pressurised ventilation in floating-leaved aquatic macrophytes. Aquat. Bot., 54: 137-150.
[28] Iqbal, N. et al. 2017. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in plant science 08. DOI: https://doi.org/10.3389/ fpls.2017.00475
[29] Ismail, S.N., Hamid, M.A. and Mansor, M. 2018. Ecological correlation between aquatic vegetation and freshwater fish populations in Perak River, Malaysia. Biodiversitas, 19: 279-284.
[30] Jackson, M.B. 2008. Ethylene-promoted Elongation: an Adaptation to Submergence Stress. Ann. Bot., 101: 229-248. DOI:10.1093/aob/mcm237
[31] Kaul, R.B. 1976. Anatomical observations on floating leaves. Aquat. Bot., 2: 215-234.
[32] Klok, P.F. and van der Velde, G. 2017. Plant traits and environment: Floating leaf blade production and turnover of water lilies. PeerJ. DOI: 10.7717/peerj.3212
[33] Kordyum, E. et al. 2021. Hydropotes of young and mature leaves in Nuphar lutea and Nymphaea alba (Nymphaeaceae): Formation, functions and phylogeny. Aquat. Bot., 169: 1-8. DOI:https://doi.org/10.1016/j.aquabot.2020.103342
[34] Les, D.H. 2018. Aquatic dicotyledons of North America: Ecology, life history and systematics. CRC Pres 1351 p.
[35] Li, G., Hu, S., Hou, H. and Kimura, S. 2019. Heterophylly: Phenotypic plasticity of leaf shape in aquatic and amphibious plants. Plants, 8(10): 420. DOI: https://doi.org/10.3390/plants8100420
[36] Matthews, P.G.D. and Seymour, R.S. 2006. Anatomy of the gas canal system of Nelumbo nucifera. Aquat. Bot., 85: 147-154.
[37] Matthews, P.G.D. and Seymour, R.S. 2014. Stomata actively regulate internal aeration of the sacred lotus Nelumbo nucifera. Plant Cell Environ., 37: 402-413. DOI: 10.1111/pce.12163
[38] Munné, S, Simancas, B. and Müller, M. 2018. Ethylene signaling cross-talk with other hormones in Arabidopsis thaliana exposed to contrasting phosphate availability: Differential effects in roots, leaves and fruits. J. Plant Physiol., 226: 114–122. DOI: 10.1016/j.jplph.2018.04.017
[39] Noor, M. 2007. Rawa lebak: Ekologi, pemanfaatan, dan pengembangannya. Raja Grafindo Persada, Jakarta Indonesia. (in Indonesian)
[40] Nursyamsi, D. et al. 2014. Buku pedoman pengelolaan lahan rawa lebak untuk pertanian berkelanjutan. Balitbangtan. IAARD Press Jakarta 72 p. (in Indonesian)
[41] Polko, J.K. et al. 2015 Ethylene-mediated regulation of A2-type CYCLINs modulates hyponastic growth in Arabidopsis. Plant Physiol., 169: 194–208.
[42] Raven, J.A. 1996. Into the voids: The distribution, function, development and maintenance of gas spaces in plants. Ann. Bot., 78: 137-142. DOI: https://doi.org/10.1006/anbo.1996.0105
[43] Ribaudo, C. et al. 2012. CO2 and CH4 fluxes across a Nuphar lutea (L.) Sm. Stand. J. Limnol., 71: 200-210.
[44] Richards, J.H., Kuhn, D.N. and Bishop, K. 2012. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae). Amer. J. Bot., 99(12): 1903-1909.
[45] Richards, J.H., Troxler, T.G., Lee, D.W. and Zimmerman, M.H. 2011. Experimental determination of effects of water depth on Nymphaea odorata growth, morphology and biomass allocation. Aquat. Bot., 95: 9-16.
[46] Ridge, I. and Amarasinghe, I. 1984. Ethylene and growth control in the fringed waterlily (Nymphoides peltata): Stimulation of cell division and interaction with buoyant tension in petioles. Plant Growth Regul., 2(3) 235-249. DOI: 10.1007/bf00124772
[47] Sasidharan, R. et al. 2017. Signal dynamics and interactions during flooding stress. Plant Physiol., 176(2): 1106–1117. DOI: http://dx.doi.org/10.1104/pp.17.01232
[48] Savada, R.P. et al. 2017. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues. Plant Mol. Biol., 95: 313-331. DOI: 10.1007/s11103-017-0653-1
[49] Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. Edward Arnold, London 610 pp.
[50] Seago, J.L. 2018. Anatomy of wetland plants in the wetland book: Structure, function, management, and methods. Springer 363-374. DOI: https://doi.org/10.1007/978-90-481-9659-3_45
[51] Shashika, D.P.G., Guruge, K., Yakandawala, D. and Yakandawala, K. 2016. Confirming the identity of newly recorded Nymphaea rubra Roxb. Ex Andrews discerning from Nymphaea pubescens Willd. Using morphometrics and molecular sequence analyses. Bangladesh J. Plant Taxon., 23(2): 107-117.
[52] Smith, I.M., Fiorino, G.E., Grabas, G.P. and Wilcox, D.A. 2020. Wetland vegetation response to record-high Lake Ontario water levels. Journal of Great Lakes Research. DOI: https://doi.org/10.1016/j.jglr.2020.10.013
[53] Sorrell, B.K., Brix, H. and Orr, P.T. 1997. Eleocharis sphacelata: Internal gas transport pathways and modelling of aeration by pressurized flow and diffusion. New Phytol., 136: 433-442.
[54] Sorrell, B.K. and Tanner, C.C. 2000. Convective gas flow and internal aeration in Eleocharis sphacelata in relation to water depth. J. Ecol., 88: 778-789.
[55] Subagyo, H. 2006. Lahan rawa lebak. In: Karakteristik dan pengelolaan lahan rawa. Balai besar penelitian dan pengembangan sumberdaya lahan pertanian. Badan penelitian dan pengembangan pertanian. Departemen Pertanian. Bogor. (in Indonesian)
[56] Susilawati, A. and Nazemi, D. 2017. Perspektif agroekologi lahan rawa. In: Agroekologi rawa. IAARD Press.
[57] Tiner, RW. 2017. Wetland indicators: A guide to wetland formation, identification, delineation, classification, and mapping. CRC Press, Boca Raton, London New York 2nd Edition.
[58] Tsuchiya, T. 1988. Comparative studies on the morphology and leaf life span of floating and emerged leaves of Nymphoides peltata (Gmel.) O. Kuntze. Aquat. Bot., 29: 381-386.
[59] Tsuchiya, T. 1991. Leaf life span of floating-leaved plants. Vegetation, 97: 149-160.
[60] Ursyamsi, D. et al. 2014. Buku pedoman pengelolaan lahan rawa lebak untuk pertanian berkelanjutan. Balitbangtan. IAARD Press Jakarta 72 p. (in Indonesian).
[61] van der Poel B, Smet D, van der Straeten, D. 2015. Ethylene and hormonal cross-talk in vegetative growth and development. Plant Physiol., 169: 61–72. DOI: https://doi.org/10.1104/pp.15.00724
[62] van der Valk, A.G. 2006. The biology of freshwater wetlands: Biology of habitats. Oxford University Press 1st Edition.
[63] Voesenek, L.A.C.J. and van der Veeon, R. 1994. The role of phytohormon in the plant stress: How to much or two little waters. ACTA Bot. Neerl, 43: 91-127.
[64] Waters, I. and Shay, J.M. 1992. Effect of water depth on population parameters of a Typha glauca Stand. Can. J. Bot., 70: 349-351.
[65] Weisner, S.E.B. and Strand, J.A. 1996. Rhizome architecture in Phragmites australis in relation to water depth: Implications for within-plant oxygen transport distances. Folia Geobot. Phytotx., 31: 91-97.
[66] Weisner, S.E.B. 1988. Factors affecting the internal oxygen supply of Phragmites australis (Cav.) Trin. Ex Steudel in situ. Aquat. Bot., 31: 329-335.
[67] Wirjohamidjojo, S. 2010. Iklim kawasan Indonesia: dari aspek dinamik-sinoptik. Badan Meteorologi, Klimatologi, dan Geofisika 172 p. (in Indonesian)
[68] Wu, J, Zhao, H-B., Yu, D. and Xu, X. 2017. Transcriptome profiling of the floating leaved aquatic plant Nymphoides peltata in response to flooding stress. BMC Genom., 18: 119. DOI: 10.1186/s12864-017-3515-y
[69] Yu, L. and Yu, D. 2011. Differential responses of the floating-leaved aquatic plant Nymphoides peltata to gradual versus rapid increases in water levels. Aquat. Bot., 94(2): 71–6.
[70] Zhang, W., et al. 2020. Progress of ethylene action mechanism and its application on plant type formation in crops. Saudi J. Biol. Sci., 27: 1667-1673. DOI: https://doi.org/10.1016/j.sjbs.2019.12.038
Copyright© 2024 The Author(s). Published by ASERS Publishing 2024. This is an open access article distributed under the terms of CC-BY 4.0 license.