Analysis and Assessment of Seismic Hazard for the Azov-Black Sea Recreation Area
Abstract
One of the geological structures accountable for the implementation of seismic potential of the region is the largest vertical faults in the Earth’s interior, where earthquake foci are usually located. This article is aimed at developing a better method for calculation of stresses and strains that occur in such seismogenic areas. According to the results of the analysis of data collected during the expeditionary work, the geophysical medium is modeled by a block structure in the form of a half-space with a cut rectangular parallelepiped, which is divided into five block elements. The state of material in the geological medium is described in each block by motion equations for a homogeneous, isotropic elastic medium in the Lamé form. Following the block element method, the algorithm of the differential factorization method is implemented in each block. Based on the numerical analysis results, the main trends in contact stresses and dynamics of displacement amplitudes were determined depending on the mechanical property values of the block material and the geometric parameters of the structure.
References
[2] Babeshko, V.A., Evdokimova, O.V., and Babeshko, O.M. 2018. On the possibility of predicting some types of earthquake by a mechanical approach. Acta Mechanica, 229(5): 2163–2175. DOI:https://doi.org/10.1007/s00707-017-2092-0
[3] Babeshko, V.A., et al. 2009. The differential factorization method for a block structure. Doklady Physics, 54(1): 25–28. DOI: https://doi.org/10.1134/S1028335809010078
[4] Babeshko, V.A., et al. 2018. Origin of Starting Earthquakes under Complete Coupling of the Lithosphere Plates and a Base. Doklady Physics, 63(2): 70–75. DOI: https://doi.org/10.1134/S1028335818020015
[5] Brady, B.T. 1975. Theory of earthquakes. II. Inclusion theory of crustal earthquakes. Pure and Applied Geophysics, 113: 149–168. DOI: https://doi.org/10.1007/BF01592907
[6] Di Toro, G., et al. 2011. Fault lubrication during earthquakes. Nature, 471(7339): 494–498. DOI:https://doi.org/10.1038/nature09838
[7] Doglioni, C. 2018. A classification of induced seismicity. Geoscience Frontiers, 9(6): 1903–1909. DOI:https://doi.org/10.1016/j.gsf.2017.11.015
[8] Flambaum, V., Martin, G., and Pavlov, B. 2020. A resonance interaction of seismogravitational modes on tectonic plates. Operator Theory: Advances and Applications, 276: 305-334. DOI:https://doi.org/10.1007/978-3-030-31531-3_18
[9] Fraser-Smith, A.C. 2008. Ultralow-Frequency Magnetic Fields Preceding Large Earthquakes. EOS, 89(23): 211.
[10] Geller, R.J. 1997. Earthquake prediction: a critical review. Geophysical Journal International, 131: 425–450. DOI: https://doi.org/10.1111/j.1365-246X.1997.tb06588.x
[11] Guglielmi. A.V., Zotov. O.D. 2012. Magnetic perturbations before the strong earthquakes. Izvestiya, Physics of the Solid Earth, 48(2): 171–173. DOI: https://doi.org/10.1134/S1069351312010065
[12] Hattori, K. 2004. ULF Geomagnetic сhanges associated with large earthquakes. Terrestrial, Atmospheric and Oceanic Sciences, 15(3): 329–360.
[13] Hayakawa, M. 1999. Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. Terra Sci. Pub Co.
[14] Ide, S., Beroza, G.C. 2001. Does apparent stress vary with earthquake size? Geophysical Research Letters, 28(17): 3349–3352. DOI: https://doi.org/10.1029/2001GL013106
[15] Jacobs, T. 2014. Searching for solutions to induced seismicity. Journal of Petroleum Technology, 66(9). DOI:https://doi.org/10.2118/0914-0060-JPT
[16] Langer, L., Ragon, T., Sladen, A., and Tromp, J. 2020. Impact of topography on earthquake static slip estimates Tectonophysics 791, no. 228566, DOI: https://doi.org/10.1016/j.tecto.2020.228566
[17] Mokarram, M., Pourghasemi, H.R., Tiefenbacher, J.P. 2020. Using Dempster–Shafer theory to model earthquake eventsicle. Natural Hazards, 103(2): 1943–1959. DOI: https://doi.org/10.1007/s11069-020-04066-w
[18] Moretto, T., Sibeck, D. G., and Watermann, J.F. 2004. Occurrence statistics of magnetic impulsive events. Annales Geophysicae, 22: 585–602. DOI: https://doi.org/10.5194/angeo-22-585-2004
[19] Pan, X., Málaga-Chuquitaype, C. 2020. Seismic control of rocking structures via external resonators Earthquake. Engineering and Structural Dynamics, 49(12): 1180-1196. DOI: https://doi.org/10.1002/eqe.3284
[20] Pavlova, A.V., et al. 2019. Assessment of the environmental consequences caused by endogenous and anthropogenic hazards for the Azov recreation area. Journal of Environmental Management and Tourism, X(7): 1445-1457. DOI: http://dx.doi.org/10.14505/jemt.v10.7(39).02
[21] Ratner, S., Zaretskaya, M. 2020. Evaluating Efficiency of Russian Regional Environmental Management Systems. Quality – Access to Success, 21(175): 120-125.
[22] Sadovskiy, M.A., Bolkhovitinov, L.G., Pisarenko, V.F. 1987. Deformation of geophysical environment and seismical process. Nauka (in Russian).
[23] Scholz, C.H., Sykes, L.R., Aggarwal, Y.P. 1973. Earthquake prediction: a physical basis. Science, 181: 803–810. DOI: https://doi.org/10.1126/science.181.4102.803
[24] Suckale, J. 2009. Induced Seismicity in Hydrocarbon Fields. Advances in Geophysics, 51(С): 55–106. DOI:https://doi.org/10.1016/S0065-2687(09)05107-3
[25] Temerdashev, Z.A., Pavlenko, L.F., Korpakova, I.G., Ermakova, Y.S. 2018. Analytical Aspects of the Determination of the Total Concentration and Differentiation of Anthropogenic and Biogenic Hydrocarbons in Aquatic Ecosystems. Journal of Analytical Chemistry, 73(12): 1137-1145. DOI:https://doi.org/10.1134/S1061934818120092
[26] Xiao, L., Lapusta, N., and Rosakis, A.J. 2007. Pulse-like and crack-like ruptures in experiments mimicking crustal earthquakes. Proceedings of the National Academy of Sciences, 104(48): 18931–18936. DOI:https://doi.org/10.1073/pnas.0704268104
[27] Zotov, O.D., Guglielmi, A.V., and Sobisevich, A.L. 2013. On magnetic precursors of earthquakes. Izvestiya. Physics of the Solid Earth, 49(6): 882–889. DOI: https://doi.org/10.1134/S1069351313050145
The Copyright Transfer Form to ASERS Publishing (The Publisher)
This form refers to the manuscript, which an author(s) was accepted for publication and was signed by all the authors.
The undersigned Author(s) of the above-mentioned Paper here transfer any and all copyright-rights in and to The Paper to The Publisher. The Author(s) warrants that The Paper is based on their original work and that the undersigned has the power and authority to make and execute this assignment. It is the author's responsibility to obtain written permission to quote material that has been previously published in any form. The Publisher recognizes the retained rights noted below and grants to the above authors and employers for whom the work performed royalty-free permission to reuse their materials below. Authors may reuse all or portions of the above Paper in other works, excepting the publication of the paper in the same form. Authors may reproduce or authorize others to reproduce the above Paper for the Author's personal use or for internal company use, provided that the source and The Publisher copyright notice are mentioned, that the copies are not used in any way that implies The Publisher endorsement of a product or service of an employer, and that the copies are not offered for sale as such. Authors are permitted to grant third party requests for reprinting, republishing or other types of reuse. The Authors may make limited distribution of all or portions of the above Paper prior to publication if they inform The Publisher of the nature and extent of such limited distribution prior there to. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in The Paper. This agreement becomes null and void if and only if the above paper is not accepted and published by The Publisher, or is with drawn by the author(s) before acceptance by the Publisher.