Calculation of Losses from Rainfall Falling in the Design of Culverts and Drainage Systems on Highways
Abstract
The article studies the problem of calculating the loss of atmospheric precipitation to the earth surface in the design of culverts and drainage systems of objects on highways. The analysis of current research revealed that existing expressions for determining infiltration do not currently fully take into account the physical processes that occur during each phase during the development infiltration. Therefore, the purpose of this work is to develop a more physically justified expression to determine the loss of rain run off considering each phase of water infiltration into the soil. To account for the initial losses in runoff due, it is proposed to use an index level of soil moisture, which takes into account the type of soil and the initial level of moisture. An equation for calculating the rain lost through runoff from rainfall and soil type that takes into account the land use and the initial moisture level is developed. The validation of the proposed equation shows that it can be used to determine the flow losses in the design of drainage systems on highways.
References
[2] Antufiev, B.A., Egorova, O.V., Orekhov, A.A. and Kuznetsova, E.L. 2018. Dynamics of a clamped ribbed plate under moving loads. PeriodicoTcheQuimica, 15(1): 368-376.
[3] Beck, H.E., et al. 2009. Improving curve number based storm runoff estimates using soil moisture proxies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2(4): 250-259.
[4] Brocca, L., Malone, F. and Moramarco, T. 2011. Distributed rainfall–runoff modelling for flood frequency estimation and flood fore-casting, Hydrology. Process, 25(18): 2801-2813.
[5] Brocca, L., Malone, F., Moramarco, T. and Morbidelli, R. 2009a. Antecedent wetness conditions based on ERS scatterometer data. Journal of Hydrology, 364(1-2): 73-87.
[6] Brocca, L., Malone, F. Moramarco, T. and Singh, V. 2009b. Assimilation of observed soil moisture data in storm rainfall-runoff modeling. Journal of Hydrology, 14(2): 153-165.
[7] Brockenbrough, R., and Boedecker, Jr.K. 2003. Design and Construction Considerations for Culverts and Drainage Systems: Highway Engineering Handbook. McGraw-Hill Education.
[8] Coustau, M., Bouvier, C., Borrell-Estupina, V., and Jourde, H. 2012. Flood modelling with a distributed event-based parsimonious rainfall–runoff model: case of the karstic Lez river catchment. Natural Hazards and Earth System Sciences, 12(4): 1119-1133.
[9] Delgado-Ramos, F., Sanchez-Ladron-de-Guevara, M.S., Diez-Contreras, A. and Perez-Diaz, M. 2014. A methodology for the inventory of road culverts pathologies applied to the province of Jaen (Andalusia, Spain). Procedia ‒ Social and Behavioral Sciences, 160: 597-606.
[10] Feldman, A.D. 1995. HEC-1 flood hydrograph package. In: Computer Models of Watershed Hydrology. Water Resources Publications.
[11] Fragkakis, N., Marinelli, M. and Lambropoulos, S. 2015. Preliminary cost estimate model for culverts. Procedia Engineering, 123: 153-161.
[12] Graeff, T., et al. 2012. Predicting event response in a nested catchment with generalized linear models and a distributed watershed model. Hydrological Processes, 26(24): 3749-3769.
[13] Guidelines for the Analysis of Storm Water Runoff from Small Reservoirs. 1976. Available at: https://files.stroyinf.ru/Index2/1/4294853/4294853837.htm
[14] Kang, M.S., et al. 2009. Design of drainage culverts considering critical storm duration. Biosystems Engineering, 104(3): 425-434.
[15] Kim, K.J., Engel, B.A., Muthukrishnan, S. and Harbor, J. 2006. Effects of initial abstraction and urbanization on estimated runoff using CN technology. JAWRA, 42(3): 629-643.
[16] Najafi, M., and VaradarajanBhattachar, D. 2011. Development of a culvert inventory and inspection framework for asset management of road structures. Journal of King Saud University ‒ Science, 23(3): 243-254.
[17] Najafi, M., and Bhattachar, D.V. 2010. Development of a culvert inventory and inspection framework for asset management of roads tructures. Journal of King Saud University ‒ Science, 23: 243-254.
[18] Nakonechna, A.M. 2018. International billion on human right through of the prize of need approach. Journal of the National Academy of Legal Sciences of Ukraine, 25(3): 28-45.
[19] Nekrep, M.P. 2002. Manual Conversion of Roof Drainage of Large Objects, Project Documentation. Mikro Malta d.o.o..
[20] Panjen, J. 1996. Basic aspects of drainage of highways. In: Proceedings of the International Conference (pp. 25-34). University of Ljubljana.
[21] Patyukova, R.V., Minskaya, A.N., Sergienko, V.A. and Tarasenko, E.V. 2018. System of technologies for building the information space: Coverage tools. Media Watch, 9(3): 418-425.
[22] Penna, D., et al. 2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci., 15: 689-702. DOI: 10.5194/hess-15-689-2011
[23] Perrin, J., and Jhaveri, C.S. 2004. The economic costs of culvert failures. 83rd Annual Meeting of the Transportation Research Board, National Research Council. Washington, DC, U.S.A.
[24] Poškus, M.S., Valickienė, R.P. and Kuzinas, A. 2018. Making the right decision: Subjective evaluation of pro-environmental public service announcements. Public Policy and Administration, 17(4): 619-633.
[25] Rosa, L.D.S., et al. 2018. Study on methods of determination of an ecological flow for the management of water resources of the river basin on Maracaçumé River. PeriodicoTcheQuimica, 15(30): 27-34.
[26] Syachrani, S., et al. 2010. A risk management approach to safety assessment of trenchless technologies for culvert rehabilitation. Tunnelling and Underground Space Technology, 25(6): 681-688.
[27] Terleev, V., et al. 2019. Models of hysteresis water retention capacity and their comparative analysis on the example of sandy soil. Advances in Intelligent Systems and Computing, 983: 462-471.
[28] Tramblay, Y., et al. 2010. Assessment of initial soil moisture conditions for event-based rainfall–runoff modelling. Journal of Hydrology, 387(3-4): 176-187.
[29] Tramblay, Y., Bouvier, C., Ayral, O.-A. and Marchandise, A. 2011. Impact of rainfall spatial distribution on rainfall-runoff modelling efficiency and initial soil moisture conditions estimation. Natural Hazards and Earth System Sciences, 11(1): 157-170.
[30] Tramblay, Y., et al. 2012. Estimation of antecedent wetness conditions for flood modelling in northern Morocco. Hydrology and Eart System Sciences, 9(8): 9361-9390.
[31] Wójcik, A., and Wąsowicz, J. 2017. Greenhouse gas emissions as regards the sectors in the European Union countries. Public Policy and Administration, 16(4): 672-685.
The Copyright Transfer Form to ASERS Publishing (The Publisher)
This form refers to the manuscript, which an author(s) was accepted for publication and was signed by all the authors.
The undersigned Author(s) of the above-mentioned Paper here transfer any and all copyright-rights in and to The Paper to The Publisher. The Author(s) warrants that The Paper is based on their original work and that the undersigned has the power and authority to make and execute this assignment. It is the author's responsibility to obtain written permission to quote material that has been previously published in any form. The Publisher recognizes the retained rights noted below and grants to the above authors and employers for whom the work performed royalty-free permission to reuse their materials below. Authors may reuse all or portions of the above Paper in other works, excepting the publication of the paper in the same form. Authors may reproduce or authorize others to reproduce the above Paper for the Author's personal use or for internal company use, provided that the source and The Publisher copyright notice are mentioned, that the copies are not used in any way that implies The Publisher endorsement of a product or service of an employer, and that the copies are not offered for sale as such. Authors are permitted to grant third party requests for reprinting, republishing or other types of reuse. The Authors may make limited distribution of all or portions of the above Paper prior to publication if they inform The Publisher of the nature and extent of such limited distribution prior there to. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in The Paper. This agreement becomes null and void if and only if the above paper is not accepted and published by The Publisher, or is with drawn by the author(s) before acceptance by the Publisher.