Cost-Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas: A Review

  • George E. HALKOS Laboratory of Operations Research Department of Economics University of Thessaly
  • Georgia K. GALANI Laboratory of Operations Research Department of Economics University of Thessaly

Abstract

Eutrophication represents a global environmental pressure that necessitates international co-operation and the diffusion of information to avoid information asymmetries; the construction of an appropriate legislative framework; the development of monitoring technologies and scientific research to provide the evidence for policy intervention. The health condition of the Baltic and Black Seas has deteriorated over a long period due to increases in nutrient inputs from anthropogenic and non-anthropogenic sources. The current study aims at providing a review of the literature and defining the possible gaps concerning (1) the efforts toward a sustainable marine management in the Baltic and Black Seas; (2) the methodological issues in constructing a cost-effectiveness analysis and the uncertainties entailed in the cost-effectiveness studies, and (3) the available applications of cost-effectiveness studies conducted.

References

[1] Ahlvik, L., Ekholm, P., Hyytiäinen, K., Pitkänen, H. 2014. An economic–ecological model to evaluate impacts of nutrient abatement in the Baltic Sea. Environmental Modelling and Software, 55: 164-175, http://dx.doi.org/10.1016/j.envsoft.2014.01.027
[2] Anderson, D. M., Glibert, P. M., Burkholder, J. M. 2002. Harmful Algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25: 704-726, http://dx.doi.org/10.1007/BF02804901
[3] Artioli, Y., Friedrich, J., Gilbert, J.A., McQuatters-Gollop, A., Mee, D.L., Vermaat, E.J., Wulff, F., Humborg, C., Palmeri, L., Pollehne, F. 2008. Nutrient budgets for European seas: a measure of the effectiveness of nutrient reduction policies. Marine Pollution Bulletin, 56: 1609–1617, http://dx.doi.org/10.1016/j.marpolbul.2008.05.027
[4] Aydin, M. 2005 Regional cooperation in the Black Sea and the role of institutions. Perceptions, Quarterly Journal of the Center for Strategic Research / Ministry of Foreign Affairs – Turkey, 10: 57-83.
[5] Azzaino, Z., Conrad, J.M., Ferraro, P.J. 2002. Optimizing the Riparian Buffer: Harold Brook in the Skaneateles Lake Watershed, New York. Land Economics, 78: 501-514, http://dx.doi.org/10.2307/3146849
[6] Balana, B.B., Lago, M., Baggaley, N., Castellazzi, M., Sample, J., Stutter, M., Slee, B., Vinten, A. 2012. Integrating Economic and Biophysical Data in Assessing Cost-Effectiveness of Buffer Strip Placement. Journal of Environmental Quality, 41: 380-388, http://dx.doi.org/10.2134/jeq2010.0544
[7] Balana, B.B., Vinten, A., Slee, B. 2011. A review on cost-effectiveness analysis of agri-environmental measures related to the EU WFD: key issues, methods, and applications. Ecological Economics 70: 1021– 1031, http://dx.doi.org/10.1016/j.ecolecon.2010.12.020
[8] Bartnicki, J., Semeena, V.S. 2013. Atmospheric Nitrogen Depositions to the Baltic Sea during 1995-2011. HELCOM Baltic Sea Environment Fact Sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/. (Accessed on January 2014)
[9] Bartolini, F., Bazzani, G. M., Gallerani, V., Raggi, M., Viaggi, D. 2007. The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: An analysis based on farm level multi-attribute linear programming models. Agricultural Systems, 93: 90-114, http://dx.doi.org/10.1016/j.agsy.2006.04.006
[10] Barton, D.N., Saloranta, T., Moe, S.J., Eggestad, H.O., Huikka, S. 2008. Bayesian belief networks as a meta-modelling tool in integrated river basin management - pros and cons in evaluating nutrient abatement decisions under uncertainty in Norwegian river basin. Ecological Economics, 66: 91–104, http://dx.doi.org/10.1016/j.ecolecon.2008.02.012
[11] Barton, D.N., Saloranta, T., Moe, S.J., Eggestad, H.O., Vagstad, N., Solheim, A.L., Selvik, J.L. 2006. Using belief networks in pollution abatement planning. Example from Morsa catchment, South Eastern Norway. NIVA Reports No.5213, Norwegian Institute for Water Research (NIVA).
[12] Beaumont, N., Tinch, R. 2004. Abatement cost curves: a viable management tool for enabling the achievement of win–win waste reduction strategies?. Journal of Environmental Management, 71: 207-215, http://dx.doi.org/10.1016/j.jenvman.2004.03.001
[13] Behrendt, H., Kornmilch, M., Opitz, D., Schmoll, O., Scholz, G. 2002. Estimation of the nutrient inputs into river systems–experiences from German rivers. Regional Environmental Change, 3: 107-117, http://dx.doi.org/10.1007/s10113-002-0042-3
[14] Bendtsen, J., Gustafsson, K. E., Söderkvist, J., Hansen, J. L. 2009. Ventilation of bottom water in the North Sea–Baltic Sea transition zone. Journal of Marine Systems, 75: 138-149, http://dx.doi.org/10.1016/j.jmarsys.2008.08.006
[15] Berbel, J., Martin-Ortega, J., Mesa, P. 2011. A cost-effectiveness analysis of water-saving measures for the water framework directive: the case of the Guadalquivir River Basin in Southern Spain. Water Resources Management, 25: 623-640, http://dx.doi.org/10.1007/s11269-010-9717-6
[16] Black Sea Commission (BSC). 2009. Implementation of the Strategic Action Plan for the Rehabilitation and Protection of the Black Sea (2002–2007). Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC), Istanbul, Turkey. http://www.blacksea-commission.org/. (Accessed on December 2013)
[17] Black Sea Commission (BSC). 2008. State of the Environment of the Black Sea (2001–2006/7). Edited by Temel Oguz. Publications of the Commission on the Protection of the Black Sea Against Pollution (BSC), Istanbul, Turkey. http://www.blacksea-commission.org/. (Accessed on December 2013).
[18] Borja, Á., Galparsoro, I., Solaun, O., Muxika, I., Tello, E. M., Uriarte, A., Valencia, V. 2006. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuarine Coastal and Shelf Science, 66: 84-96, http://dx.doi.org/10.1016/j.ecss.2005.07.021
[19] Börjesson, M., Ahlgren, E.O. 2012. Cost-effective biogas utilisation–A modelling assessment of gas infrastructural options in a regional energy system. Energy, 48: 212-226, http://dx.doi.org/10.1016/j.energy.2012.06.058
[20] Borysova, O., Kondakov, A., Paleari, S., Rautalahti-Miettinen, E., Stolberg, F., Daler, D. 2005. Eutrophication in the Black Sea region, Impact assessment and Causal chain analysis. University of Kalmar, Sweden.
[21] Bouraoui, F., Grizzetti, B. 2013. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment, 468: 1267-1277, http://dx.doi.org/10.1016/j .scitotenv.2013.07.066
[22] Bracmort, K.S., Arabi, M., Frankenberger, J.R., Engel, B.A., Arnold, J.G. 2006. Modeling long-term water quality impact of structural BMPs. Transactions of the ASABE, 49: 367-374.
[23] Brady, M. 2003. The relative cost-efficiency of arable nitrogen management in Sweden. Ecological Economics, 47: 53–70, http://dx.doi.org/10.1016/j.ecolecon.2002.11.001
[24] Brouwer, R., De Blois, C. 2008. Integrated modelling of risk and uncertainty underlying the cost and effectiveness of water quality measures. Environmental Modelling and Software, 23: 922-937, http://dx. doi.org/10.1016/j.envsoft.2007.10.006
[25] Brouwer, R., Hofkes, M. 2008. Integrated hydro-economic modelling: Approaches, key issues and future research directions. Ecological Economics, 66: 16-22, http://dx.doi.org/10.1016/j.ecolecon.2008 .02.009
[26] Camargo, J.A., Alonso, Á. 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32: 831-849, http://dx.doi.org/ 10.1016/j.envint.2006.05.002
[27] Chaplot, V., Saleh, A., Jaynes, D.B., Arnold, J. 2004. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water, Air and Soil Pollution, 154: 271-293, http://dx.doi.org/10.1023/B:WATE.0000022973.60928.30
[28] Cools, J., Broekx, S., Vandenberghe, V., Sels, H., Meynaerts, E., Vercaemst, P., Seuntjens, P., Van Hulle, S., Wustenberghs, H., Bauwens, W., Huygens, M. 2011. Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environmental Modelling and Software, 26: 44-51, http://dx.doi.org/10.1016/j.envsoft.2010. 04.017
[29] Cuttle, S. P., Macleod, C.J.A., Chadwick, D. R., Scholefield, D., Haygarth, P. M., Newell-Price, P., Harris, D., Shepherd, M. A., Chambers, B. J., Humphrey, R. 2007. An inventory of measures to control diffuse water pollution from agriculture. Report to Defra, produced by ADAS and IGER, London.
[30] Danielsson, Å., Papush, L., Rahm, L. 2008. Alterations in nutrient limitations—Scenarios of a changing Baltic Sea. Journal of Marine Systems 73: 263-283, http://dx.doi.org/10.1016/j.jmarsys.2007.10.015
[31] DiMento, J. F., Hickman, A. J. 2012. Environmental Governance of the Great Seas: Law and Effect. Edward Elgar Publishing.
[32] Dworak, T., Kampa, E., Windhofer, G., Schilling, C., Zessner, M., Lampert, C. 2008. Cost Effective Measures to Minimise Nutrient Pollution. Methodology for selecting cost-effective measures to tackle nutrient pollution from the agricultural, municipal and industrial sectors in the Black Sea. Ecologic gGmbH, Institute for International and European Environmental Policy, Berlin.
[33] Ebbesson, J. 1992. Baltic Convention, Transition or standstill? In Baltic Environmental Cooperation – A Regime in Transition, R. Hjorth (ed.), Linköping University, Water and Environmental Studies, Tema V Report 23, 1996.
[34] Elofsson, K. 2003. Cost effective reductions of stochastic agricultural loads to the Baltic Sea. Ecological Economics, 47: 13–31, http://dx.doi.org/10.1016/j.ecolecon.2002.10.001
[35] Elofsson, K. 1997. Cost-Effective Abatement in the Agricultural Load of Nitrogen to the Baltic Sea. Dissertations, 28, Dept of Economics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
[36] Elofsson, K. 2012. Swedish nutrient reduction policies: an evaluation of cost-effectiveness. Regional Environmental Change, 12: 225-235, http://dx.doi.org/10.1007/s10113-011-0251-8
[37] European Commission, 2012. IMPACT ASSESSMENT Accompanying The Document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Blueprint to Safeguard Europe's Water Resources {COM (2012) 673 final}{SWD (2012) 381 final}.
[38] European Commission, 2010. Report on the Application by Member States of the EU of the Commission 2009/384/EC Recommendation on Remuneration Policies in the Financial Services Sector: (2009, Recommendation on Remuneration Policies in the Financial Services Sector): Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Publications Office.
[39] European Environment Agency (EEA). 2006. Integration of environment into EU agriculture policy - the IRENA indicator-based assessment report, European Environment Agency EEA Report No 2, Copenhagen.
[40] European Environment Agency (EEA). 2005. Source apportionment of nitrogen and phosphorus inputs into the aquatic environment. European Environmental Agency EEA Report No 7, Copenhagen.
[41] European Environment Agency (EEA). 2010. The European environment – state and outlook 2010: synthesis, European Environment Agency, Copenhagen.
[42] Fezzi, C., Rigby, D., Bateman, I. J., Hadley, D., Posen, P. 2008. Estimating the range of economic impacts on farms of nutrient leaching reduction policies. Agricultural Economics, 39: 197-205, http://dx.doi.org/10.1111/j.1574-0862.2008.00323.x
[43] Fröschl, L., Pierrard, R., Schönbäck, W. 2008. Cost-efficient choice of measures in agriculture to reduce the nitrogen load flowing from the Danube River into the Black Sea: An analysis for Austria, Bulgaria, Hungary and Romania. Ecological Economics, 68: 96-105, http://dx.doi.org/10.1016/ j.ecolecon.2008.02.005
[44] Glavan, M., White, S., Holman, I. P. 2011. Evaluation of river water quality simulations at a daily time step–Experience with SWAT in the Axe Catchment, UK. CLEAN– Soil, Air, Water, 39: 43-54, http://dx.doi.org/10.1002/clen.200900298
[45] Gren, M., Destouni, G., Scharin, H. 2000. Cost effective management of stochastic coastal water pollution. Environmental Modeling and Assessment, 5: 193–203, http://dx.doi.org/10.1023/A:1011588129892
[46] Gren, M., Destouni, G., Tempone, R. 2002. Cost effective policies for alternative distributions of stochastic water pollution. Journal of Environmental Management, 66: 145-157, http://dx.doi.org/10.1006/jema.2002. 0569
[47] Gren, M. 2008. Adaptation and mitigation strategies for controlling stochastic water pollution: An application to the Baltic Sea. Ecological Economics, 66: 337-347, http://dx.doi.org/10.1016/j.ecolecon.2007 .09.010
[48] Gren, M., Jannke, P., Elofsson K. 1997. Cost-Effective Nutrient Reductions to the Baltic Sea, Environmental and Resource Economics, 10: 341–362, http://dx.doi.org/10.1023/A:1026497515871
[49] Håkanson, L., Bryhn, A.C. 2008. Eutrophication in the Baltic Sea: Present situation, nutrient transport processes, remedial strategies. Springer.
[50] Halkos, G.E. 1993. An evaluation of the direct costs of abatement under the main desulphurisation technologies. MPRA Paper 32588, University Library of Munich, Germany, http://mpra.ub.uni-muenchen.de/id/eprint/32588
[51] Halkos, G.E. 2010. Construction of abatement cost curves: The case of F-gases. MPRA Paper 26532, University Library of Munich, Germany, http://mpra.ub.uni-muenchen.de/id/eprint/26532
[52] Halkos, G.E. 1996. Evaluating the direct costs of controlling NOX emissions in Europe, Energ. Source. 20: 223-239, http://dx.doi.org/10.1080/00908319808970060
[53] Halkos, G.E. 1995. Evaluation of the direct cost of sulphur abatement under the main desulfurization technologies, Energy Sources, 17: 391-412, http://dx.doi.org/10.1080/009083195 08946089
[54] Halkos, G.E. and Galani G.K. 2013. Economic foundations to assess non-market values in marine and coastal ecosystems’ water quality, Journal of Environmental Management and Tourism, Vol 4, 1(7): 5-20.
[55] Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., Howitt, R. E. 2009. Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375: 627-643, http://dx.doi.org/10.1016/j.jhydrol.2009.06.037
[56] Hasler, B., Smart J.C.R., Fonnesbech-Wulff A. 2012. Deliverable 8.1. RECOCA. Structure of BALTCOST Drainage Basin scale abatement cost minimisation model for nutrient reductions in Baltic Sea regions.
[57] Hautakangas, S., Ollikainen, M., Aarnos, K., Rantanen, P. 2013. Nutrient Abatement Potential and Abatement Costs of Waste Water Treatment Plants in the Baltic Sea Region. Ambio, 1-9, http://dx.doi.org/10.1007/s13280-013-0435-1
[58] Heinz, I., Pulido-Velazquez, M., Lund, J. R., Andreu, J. 2007. Hydro-economic modeling in river basin management: implications and applications for the European water framework directive. Water Resources Management, 21: 1103-1125, http://dx.doi.org/10.1007/s11269-006-9101-8
[59] Helin, J., Laukkanen, M., Koikkalainen, K. 2008. Abatement costs for agricultural nitrogen and phosphorus loads: a case study of crop farming in south-western Finland. Agricultural and Food Science, 15: 351-374, http://dx.doi.org/10.2137/145960606780061452
[60] Helsinki Commission (HELCOM). 2008. Activities 2007 Overview. Baltic Sea Environment Proceedings, No. 114.
[61] Helsinki Commission (HELCOM). 2013. Approaches and methods for eutrophication target setting in the Baltic Sea region. Baltic Sea Environment Proceedings, No. 133.
[62] Helsinki Commission (HELCOM). 2009. Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Executive Summary, Baltic Sea Environment Proceedings. No. 115B.
[63] Helsinki Commission (HELCOM). 2011. The Fifth Baltic Sea Pollution Load Compilation (PLC-5), Baltic Sea Environment Proceedings No. 128.
[64] Helsinki Commission and Nordic Environment Finance Corporation (HELCOM and NEFCO). 2007. Economic analysis of the BSAP with focus on eutrophication. Final report. HELCOM, Helsinki.
[65] Hyytiäinen, K., Ahtiainen, H., Heikkilä, J. 2008. An integrated simulation model to evaluate national measures for the abatement of agricultural nutrients in the Baltic Sea. Agricultural and Food Science, 18: 440-459.
[66] Iho, A. 2005. Does scale matter? Cost-effectiveness of agricultural nutrient abatement when target level varies. Agricultural and Food Science, 14: 277-292.
[67] International Commission for the Protection of the Danube River- 93. International Commission for the Protection of the Black Sea (ICPDR-ICPBS). 1999. Causes and Effects of Eutrophication in the Black Sea, Summary Report. Programme Coordination Unit UNDP/GEF Assistance.
[68] Jackson, T. 1991. Least-cost greenhouse planning supply curves for global warming abatement. Energy Policy, 19: 35-46, http://dx.doi.org/10.1016/0301-4215(91)90075-Y
[69] Kaini, P., Artita, K., Nicklow, J.W. 2012. Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resources Management, 26: 1827-1845, http://dx.doi.org/10.1007/s11269-012-9989-0
[70] Kern, K., Löffelsend, T. 2008. Governance beyond the nation state: Transnationalization and Europeanization of the Baltic Sea Region. In Governing a common sea–Environmental policies in the Baltic Sea region, Joas, M., Jahn, D., Kern, K., London: Earthscan Publications, 115-141.
[71] Kesicki, F. 2010. Marginal Abatement Cost Curves: Combining Energy System Modelling and Decomposition Analysis. International Energy Workshop, Stockholm.
[72] Lacroix, A., Beaudoin, N., Makowski, D. 2005. Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53: 115-127, http://dx.doi.org/10.1016/j.ecolecon. 2004.11.001
[73] Ledoux, L., Turner, R. K. 2002. Valuing ocean and coastal resources: a review of practical examples and issues for further action. Ocean & Coastal Management, 45: 583-616, http://dx.doi.org/ 10.1016/S0964-5691(02)00088-1
[74] Lescot, J. M., Bordenave, P., Petit, K., Leccia, O. 2013. A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environmental Modelling & Software, 41: 107-122, http://dx.doi.org/10.1016/j.envsoft.2012.10.008
[75] Lindkvist, M., Gren, M., Elofsson, K. 2013. A Study of Climate Change and Cost Effective Mitigation of the Baltic Sea Eutrophication, Climate Change. In Realities, Impacts Over Ice Cap, Sea Level and Risks, Bharat R. S., 459-480.
[76] Lindqvist, M., Gren, I. M. 2013. Cost effective nutrient abatement for the Baltic Sea under learning-by-doing induced technical change. Working Paper 01/2013. Swedish University of Agricultural Sciences, Department of Economics, Sweden.
[77] Markovska, A., Zylicz, T. 1999. Costing an international public good: the case of the Baltic Sea. Ecological Economics, 30: 301-316, http://dx.doi.org/10.1016/S0921-8009(98)00138-4
[78] McKitrick, R. A. 1999. Derivation of the Marginal Abatement Cost Curve. Journal of Environmental Economics and Management, 37: 306-314, http://dx.doi.org/10.1006/jeem.1999.1065
[79] Messer, K. D. 2006. The conservation benefits of cost-effective land acquisition: a case study in Maryland. Journal of Environmental Management, 79: 305–315, http://dx.doi.org/10.1016/ j.jenvman.2005.07.008
[80] Metz, B. 2007. Climate Change 2007-Mitigation of Climate Change. Working Group III Contribution to the Fourth Assessment Report of the IPCC (Vol. 4). Cambridge University Press.
[81] Mewes, M. 2012. Diffuse nutrient reduction in the German Baltic Sea catchment: Cost-effectiveness analysis of water protection measures. Ecological Indicators, 22: 16-26, http://dx.doi.org/ 10.1016/j.ecolind.2012.01.006
[82] Meybeck, M. 1993. C, N, P and S in rivers: from sources to global inputs. In Interactions of C, N, P and S Biogeochemical Cycles and Global Change, Wollast, R., Mackenzie, F.L., Chou, L., NATO ASI, Springer, Berlin, 163–193, http://dx.doi.org/10.1007/978-3-642-76064-8_6
[83] Moss, B. 1988. Ecology of Fresh Waters, Blackwell, Oxford, 417.
[84] Mouratiadou, I., Russell, G., Topp, C., Louhichi, K., Moran, D. 2010. Modelling common agricultural policy-water framework directive interactions and cost-effectiveness of measures to reduce nitrogen pollution. Water Science & Technology, 61: 2689-2697, http://dx.doi.org/10.2166/wst.2010. 216
[85] Naucler, T., Enkvist P. A. 2009. Pathways to a Low-Carbon Economy - Version 2 of the Global Greenhouse Gas Abatement Cost Curve. McKinsey & Company.
[86] Ollikainen, M., Honkatukia, J. 2001. Towards Efficient Pollution Control in the Baltic Sea: An Anatomy of Current Failure with Suggestions for Change. Ambio, 30: 245–253, http://dx.doi.org/ 10.1579/0044-7447-30.4.245
[87] Panagopoulos, Y., Makropoulos, C., Mimikou, M. 2011. Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales. Journal of Environmental Management, 92: 2823-2835, http://dx.doi.org/10.1016/j.jenvman.2011.06.035
[88] Raakjaer, J., Leeuwen, J. V., Tatenhove, J. V., & Hadjimichael, M. 2014. Ecosystem-based marine management in European regional seas calls for nested governance structures and coordination—A policy brief. Marine Policy, http://dx.doi.org/10.1016/j.marpol.2014.03.007
[89] Rabotyagov, S., Jha, M., Campbell, T. 2010. Searching for Efficiency: Least cost nonpoint source pollution control with multiple pollutants, practices, and targets. Journal of Natural and Environmental Sciences, 1: 75-90.
[90] Rommelfanger, H. 1996. Fuzzy linear programming and applications. European Journal of Operational Research, 92: 512-527, http://dx.doi.org/10.1016/0377-2217(95)00008-9
[91] Santhi, C., Srinivasan, R., Arnold, J.G., Williams, J.R. 2006. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software, 21: 1141-1157, http://dx.doi.org/10.1016/j.envsoft.2005.05.013
[92] Schou, J. S., Neye, S. T., Lundhede, T., Martinsen, L., Hasler, B. 2006. Modelling costefficient reductions of nutrient loads to the Baltic Sea. NERI technical report, (592).
[93] Schou, J.S., Skop, E., Jensen, J.D. 2000. Integrated agri-environmental modelling: a cost-effectiveness analysis of two nitrogen tax instruments in the Vejle Fjord watershed, Denmark. Journal of Environmental Management, 58: 199–212, http://dx.doi.org/10.1006/jema.2000.0325
[94] Schuler, J., Sattler, C. 2010. The estimation of agricultural policy effects on soil erosion—An application for the bio-economic model MODAM. Land Use Policy, 27: 61-69, http://dx.doi.org/ 10.1016/j.landusepol.2008.05.001
[95] Semaan, J., Flichman, G., Scardigno, A., Steduto, P. 2007. Analysis of nitrate pollution control policies in the irrigated agriculture of Apulia Region (Southern Italy): A bio-economic modelling approach. Agricultural Systems, 94: 357-367, http://dx.doi.org/10.1016/j.agsy.2006.10.003
[96] Sippel, M. and Jenssen, T. 2010. What Explains Cities’ Climate Policy—Making? A Review of Drivers and Barriers, Journal of Environmental Management and Tourism, Vol.1, No.1, pp.39–56.
[97] Smith, V. H. 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research, 10: 126-139, http://dx.doi.org/10.1065/ espr2002.12.142
[98] Söderqvist, T. 1996. Contingent valuation of a less eutrophicated Baltic Sea. Beijer discussion. Paper Series No 88. Stockholm.
[99] Stewart, K., Kassakian, S., Krynytzky, M., DiJulio, D., Murray, J.W. 2007. Oxic, suboxic, and anoxic conditions in the Black Sea. In The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement, Springer Netherlands, 1-21, http://dx.doi.org/10.1007/978-1-4020-5302-3_1
[100] Topping, G., Sarikaya, H., Mee L.D. 1998. Land-based sources of pollution to the Black Sea. In Black Sea Pollution Assessment, Mee, L.D., G. Topping (Eds), UN Publications, New York, 10: 33-54.
[101] Ullrich, A., Volk, M. 2009. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management, 96: 1207-1217, http://dx.doi.org/10.1016/j.agwat.2009.03.010
[102] Van Buuren, J., Smit, T., Poot, G., van Elteren, A., Kamp, O., Künitzer, A. 2002. Testing of indicators for the marine and coastal environment in Europe. European Environment Agency, Technical Report 84, Copenhagen.
[103] Van Leeuwen, J., van Hoof, L., van Tatenhove, J. 2012. Institutional ambiguity in implementing the European Union marine Strategy framework directive. Marine Policy, 36: 636-643, http://dx.doi.org/10.1016/j.marpol.2011.10.007
[104] Volk, M., Liersch, S., Schmidt, G. 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy, 26: 580-588, http://dx.doi.org/10.1016/j.landusepol.2008.08.005
[105] Voss, M., Dippner, J.W., Humborg, C., Hürdler, J., Korth, F., Neumann, T., Venohr, M. 2011. History and scenarios of future development of Baltic Sea eutrophication. Estuarine, Coastal and Shelf Science, 92: 307-322, http://dx.doi.org/10.1016/j.ecss.2010.12.037
[106] Wilby, R.L., Orr, H.G., Hedger, M., Forrow, D., Blackmoe, M. 2006. Risks posed by climate change to the delivery of water framework directive objectives in the UK. Environment International, 32: 1043-55, http://dx.doi.org/10.1016/j.envint.2006.06.017
[107] Williams, H. P. 2013. Model building in mathematical programming. John Wiley & Sons.
[108] Wulff F., Bonsdorff E., Gren I.-M., Johansson S., Stigebrandt A. 2001. Giving advice on cost-effective measures for a cleaner Baltic Sea: A challenge for science. Ambio, 30: 254-259, http://dx.doi.org/10.1579/0044-7447-30.4.254
[109] Wustenberghs, H., Broekx, S., Van Hoof, K., Claeys, D., D’Heygere, T., D’Hooghe, J., Dessers, R., Huysmans, T., Lauwers, L., Meynaerts, E., Vercaemst, P. 2008. Cost-benefit analysis of abatement measures for nutrient emission from agriculture. In Comunicación presentada al 12th Congress of the European Association of Agricultural Economists-EAAE. Gent.
[110] Yang, W., Khanna, M., Farnsworth, R., Önal, H. 2003. Integrating economic, environmental and GIS modeling to target cost effective land retirement in multiple watersheds. Ecological Economics, 46: 249-267, http://dx.doi.org/10.1016/S0921-8009(03)00141-1
Published
2016-11-14
How to Cite
HALKOS, George E.; GALANI, Georgia K.. Cost-Effectiveness Analysis in Reducing Nutrient Loading in Baltic and Black Seas: A Review. Journal of Environmental Management and Tourism, [S.l.], v. 5, n. 1, p. 28-51, nov. 2016. ISSN 2068-7729. Available at: <https://journals.aserspublishing.eu/jemt/article/view/395>. Date accessed: 19 apr. 2024.
Section
Journal of Environmental Management and Tourism

Keywords

eutrophication; cost-effectiveness analysis; abatement measures; nutrient loading; Baltic Sea; Black Sea