Synergetic Modeling the Republic of Bashkortostan Energy System Parameters
Abstract
The paper presents the results of a synergistic approach to the construction of a model that adequately reflects the ratio of renewable and conventional energy sources in the region’s energy system. The approach uses the methods of the theory of nonlinear dynamic systems. The Lotka – Volterra model was the main used instrument. The calculations allowed investigating the behavior of the Republic of Bashkortostan electric power system with the variation of the initial conditions and to assess the validity of the targets for the share of electricity produced through the use of renewable energy in the total electric power.
References
[2] Apedaille, L.P., Schilizzi, S.G.M., Freedman H.I. and Solomonovich M. 1994. Equilibria and dynamics in an economic predator-prey model of agriculture. Mathematical and Computer Modelling, 19(11): 1-15. DOI: http://dx.doi.org/10.1016/0895-7177(94)90012-4.
[3] Barnett, W., Medio, A. and Serletis, A. 1997. Nonlinear and complex dynamics in economics. Econometrics9709001. EconWPA. Paper provided by University of Kansas, Department of Economics in its series Working Papers Series In Theoretical and Applied Economics, No 201223. Available at: http://www2.ku. edu/~kuwpaper/2009Papers/201223.pdf
[4] Bazykin, A.D. 1985. Nonlinear Dynamics of Interacting Populations. Moscow: Nauka. Published by World Scientific Publishing Co. Pte. Ltd. Available at: http://www.worldscientific.com/doi/pdf/10.1142/ 9789812798725_fmatter
[5] Brander J.A., and De Bettignies J.E. 2009. Venture capital investment: the role of predator–prey dynamics with learning by doing. Economics of Innovation and New Technology, 18(1): 1-19. DOI: 10.1080/10438590701530066.
[6] Chandrasekar, S. 1950. Introduction into Doctrine of the Structure of Stars. Moscow: IL
[7] Cowan, J.D. 1970. A statistical mechanism of nervous activity, in Some Mathematical Questions in Biology: Lectures on Mathematics in the Life Sciences, 2: 3-57. Providence. R.I.: American Mathematical Society.
[8] Dasarathy, B.V. 1974. Dynamics of a class of social interaction systems. Intern. J. Syst. Sci., 5 (4): 329-333.
[9] Dolzhanskij, F.V., Kljackin, V.I., Obuhov A.M., and Chusov, M.A.1974. Nonlinear systems of hydrodynamic type. Moscow, Izdatel'stvo Nauka 1974. 160 p., in Russian.
[10] Gandolfo, G. 1971. Mathematical methods and models in economic dynamics. Elsevier Science Publishing Co Inc., US, First Edition Edition (December 1971). ISBN-10: 0720430534; ISBN-13: 978-0720430530
[11] Glansdorff, P. and Prigogine, I. 1971. Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, New York. Science 30 Jun 1972: 176(4042): 1410-1420. DOI: 10.1126/science.176.4042.1410
[12] Guttinger, W. and Eikenmeier, H. 1978. Structural Stability in Physics. Springer. Springer-Verlag Berlin Heidelberg. Volume 4. ISBN 978-3-642-67363-4. DOI 10.1007/978-3-642-67363-4.
[13] Haken, H. 1983. Advanced Synergetics. Springer-Verlag Berlin Heidelberg. Volume 20. ISBN 978-3-642-45553-7. DOI: 10.1007/978-3-642-45553-7
[14] Haken, H. 1983. Information and Self-Organisation. Berlin: Springer. Available at: https://books.google.ro/ books?isbn=1447151135
[15] Haken, H. 2004. Synergetic Computers and Cognition. Springer-Verlag Berlin Heidelberg. Series Volume 50. 2nd Edition. ISBN 978-3-662-10182-7. DOI 10.1007/978-3-662-10182-7
[16] Kerner, E.N. 1972. A dynamical approach to chemical kinetics: mass-action laws as generalized, Bull. Math. Biophys, 34 (2): 243-275. DOI: 10.1007/BF02476520.
[17] Korovkin, A.G., and Naumov, A.V. 1990. Socio-economic problems of formation of rational employment. Economics and Mathematical Methods, 26 (5): 861-870.
[18] Nasritdinov, G. 2010. Limit cycle, trophic function and the dynamics of intersectoral interaction. Current Research J. of Economic Theory, 2 (2): 32-40.
[19] Nicolis, G. and Prigogine, I. 1977. Self-organization in Nonequilibriums Systems. Wiley, New York. ISBN: 0471024015, 9780471024019
[20] Pacault, A. and Vidal, C. 1978. Synergetics Far from Equilibrium. Proceedings, Bordeaux, France. Springer Series in Synergetics 3. Berlin-Heidelberg-New York. DOI: 10.1002/zamm.19810610320.
[21] Edgar, Peters, E. 1996. Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility. 2nd Edition. NY: John Wiley and Sons. ISBN: 978-0-471-13938-6
[22] Puu, T. 1997. Nonlinear Economic Dynamics. Springer Berlin Heidelberg DOI: 10.1007/978-3-642-60775-2. ISBN 978-3-642-64549-5
[23] Pyh, Ju. A. 1976. Mathematical analysis of the model of the cultivation of the microalgae on the multicomponent medium. Proceedings on Agronomic Physics, 38: 82-84.
[24] Rozonojer, L.I. and Sedyh, E.I. 1979. About the mechanisms of evolution of self-replicating systems, III, Automatics and Telemechanics, 5: 137-148.
[25] Samuelson, P.A. 1971. Generalized predator–prey oscillations in ecological and economic equilibrium. Proc. Natl. Acad. Sci. USA, 68: 980–983.
[26] Schumpeter, J.A. 1934. The Theory of Economic Development: An Inquiry into Profits, Capital, Credit, Interest and the Business Cycle. Cambridge: Harvard University Press.
[27] Solomon, S. 2000. Generalized lotka volterra (glv) models of stock markets. Applications of Simulation to Social Sciences: 301–322.
[28] Vol'terra, V. 1976. The mathematical Theory of the Struggle for Existence. Moscow: Nauka. 288 p.
[29] Zhang, Y. 2012. China's evolution toward an authoritarian market economy – a predator-prey evolutionary model with intelligent design. Public Choice ,151 (1/2): 271-287. DOI: 10.1007/s11127-010-9747-x.
[30] Zhang, W.B. 1991. Synergetic Economics: Time and Change in Nonlinear Economics. Volume 53, Springer Series in Synergetics. Springer-Verlag. ISBN: 3540529047, ISBN-13: 978-3540529040
Copyright© 2024 The Author(s). Published by ASERS Publishing 2024. This is an open access article distributed under the terms of CC-BY 4.0 license.