Environmental Policy Selection Based on Linear-Times-Exponential One-Switch Utility Function and ELECTRE I Method

Abstract

This paper examines how utility functions perform in tackling the multicriteria decision-making problem, especially one-switch utility function. Linear-times-exponential one-switch, exponential, and linear utility functions are implemented, which transforms corresponding criteria into utilities with ELECTRE I method. The detailed formulation of the decision model is presented. A numerical example about environmental policy selection is introduced to illustrate the use of the new decision model. With different wealth levels and utility functions for a policymaker, the inconsistent outranking policies illustrate the special characteristic of linear-times-exponential one-switch utility function whose initial wealth level has a significant impact on the outranking environmental policy. This study is also the first study applying one-switch utility function in address/ing multicriteria decision-making problem.

References

[1] Aal, S.I.A. (2024). A Multi-Criteria Decision-Making Model for Sustainable and Resilient Supplier Selection and Management. Neutrosophic Systems with Applications, 15: 33-45. DOI:https://doi.org/10.61356/j.nswa.2024.1513956
[2] Abbas, A.E., & Bell, D.E. (2015). Ordinal one-switch utility functions. Operations Research, 63(6): 1411-1419. DOI: https://doi.org/10.1287/opre.2015.1426
[3] Abbas, A.E., Bakır, N. O., Klutke, G.A., & Sun, Z. (2013). Effects of Risk Aversion on the Value of Information in Two-action Decision Problems. Decision Analysis, 10(3): 257-275. DOI:https://doi.org/10.1287/deca.2013.0275
[4] Abdulla, A., & Baryannis, G. (2024). A hybrid multi-criteria decision-making and machine learning approach for explainable supplier selection. Supply Chain Analytics, 7, 100074. DOI:https://doi.org/10.1016/j.sca.2024.100074
[5] Ait Bahom, S., Chraïbi, L., & Sefiani, N. (2025). A new personnel selection model for quality positions. Journal of Applied Research on Industrial Engineering, 12(1): 103-118. DOI:https://doi.org/10.22105/jarie.2024.420649.1567
[6] Akpahou, R., Mensah, L.D., Quansah, D. A., & Kemausuor, F. (2024). Long-term energy demand modeling and optimal evaluation of solutions to renewable energy deployment barriers in Benin: A LEAP-MCDM approach. Energy Reports, 12: 1888-1904. DOI: https://doi.org/10.1016/j.egyr.2024.07.055
[7] Akram, M., Ilyas, F., & Garg, H. (2021). ELECTRE-II method for group decision-making in Pythagorean fuzzy environment. Applied Intelligence, 1-19. DOI: https://doi.org/10.1007/s10489-021-02200-0
[8] Alizadeh, A., & Yousefi, S. (2019). An integrated Taguchi loss function–fuzzy cognitive map–MCGP with utility function approach for supplier selection problem. Neural Computing and Applications, 31(11): 7595-7614. DOI: https://doi.org/10.1007/s00521-018-3591-1
[9] Almeida, A.T. (2002). Multicriteria modelling for a repair contract problem based on utility and the ELECTRE I method. IMA Journal of Management Mathematics, 13(1): 29-37. DOI: 10.1093/imaman/13.1.29
[10] Almeida, A.T. (2005). Multicriteria modelling of repair contract based on utility and ELECTRE I method with dependability and service quality criteria. Annals of Operations Research, 138: 113-126. DOI:https://doi.org/10.1007/s10479-005-2448-z
[11] Almeida, A.T. (2007). Multicriteria decision model for outsourcing contracts selection based on utility function and ELECTRE method. Computers & Operations Research, 34(12): 3569-3574. DOI:https://doi.org/10.1016/j.cor.2006.01.003
[12] Alper, D., & Başdar, C. (2017). A comparison of TOPSIS and ELECTRE methods: an application on the factoring industry. Business and Economics Research Journal, 8(3): 627. DOI:https://doi.org/10.20409/berj.2017.70
[13] Anchugina, N. (2017). One-Switch Discount Functions. arXiv preprint arXiv:1702.02254. DOI:https://doi.org/10.48550/arXiv.1702.02254
[14] Babatunde, O.M., Munda, J.L., & Hamam, Y. (2019). Selection of a hybrid renewable energy systems for a low-income household. Sustainability, 11(16), 4282. DOI: https://doi.org/10.3390/su11164282
[15] Bakır, N.O. (2017). Value of information for decision makers with sumex and linear times exponential utility. Available at: https://hdl.handle.net/20.500.12939/1905
[16] Bakır, N.O., & Klutke, G. A. (2011). Information and Preference Reversals in Lotteries European Journal of Operational Research, 210(3): 752-756. DOI: https://doi.org/10.1016/j.ejor.2010.09.037
[17] Bell, D.E. (1988). One-switch utility functions and a measure of risk. Management Science, 34(12): 1416-1424. DOI: https://doi.org/10.1287/mnsc.34.12.1416
[18] Bell, D.E., & Fishburn, P. C. (2001). Strong one-switch utility. Management Science, 47(4): 601-604. DOI:https://doi.org/10.1287/mnsc.47.4.601.9825
[19] Brito, A.J., de Almeida, A. T., & Mota, C. M. (2010). A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory. European Journal of Operational Research, 200(3): 812-821. DOI: https://doi.org/10.1016/j.ejor.2009.01.016
[20] Carpitella S., Certa A., & Mario E. (2018). The ELECTRE I method to support the FMECA, IFAC-PapersOnLine, Volume 51(11): 459-464. DOI: https://doi.org/10.1016/j.ifacol.2018.08.361
[21] Chakraborty, S., Raut, R.D., Rofin, T.M., & Chakraborty, S. (2024). On solving a healthcare supplier selection problem using MCDM methods in intuitionistic fuzzy environment. Opsearch, 1-29. DOI:https://doi.org/10.1007/s12597-023-00733-1
[22] Denuit, M.M., Eeckhoudt, L., & Schlesinger, H. (2013). When Ross meets Bell: the linex utility function. Journal of Mathematical Economics, 49(2): 177-182. DOI: https://doi.org/10.1016/j.jmateco.2013.01.006
[23] Džiugaitė-Tumėnienė, R., Motuzienė, V., Šiupšinskas, G., Čiuprinskas, K., & Rogoža, A. (2017). Integrated assessment of energy supply system of an energy-efficient house. Energy and Buildings, 138: 443-454. DOI:https://doi.org/10.1016/j.enbuild.2016.12.058
[24] Ekholm, T., et al. (2014). A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies. Energy Policy, 74: 499-509. DOI: https://doi.org/10.1016/j.enpol.2014.07.002
[25] Farahani, R. Z., & Asgari, N. (2007). Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study. European Journal of Operational Research, 176(3): 1839-1858. DOI:https://doi.org/10.1016/j.ejor.2005.10.039
[26] Ferrer-Martí, L., Ferrer, I., Sánchez, E., & Garfí, M. (2018). A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renewable and Sustainable Energy Reviews, 95: 74-83. DOI: https://doi.org/10.1016/j.rser.2018.06.064
[27] Gottwald, D., Chocholáč, J., Kayacı Çodur, M., Čubranić-Dobrodolac, M., & Yazir, K. (2024). Z-Numbers-Based MCDM approach for personnel selection at institutions of higher education for transportation. Mathematics, 12(4): 523. DOI: https://doi.org/10.3390/math12040523
[28] Karbassi Yazdi, A., Tan, Y., Birau, R., Frank, D., & Pamučar, D. (2025). Sustainable solutions: using MCDM to choose the best location for green energy projects. International Journal of Energy Sector Management, 19(1): 146-180. DOI: https://doi.org/10.1108/IJESM-01-2024-0005
[29] Lee, S. K., Mogi, G., & Kim, J. W. (2008). Multi-criteria decision making for measuring relative efficiency of greenhouse gas technologies: AHP/DEA hybrid model approach. Engineering Letters, 16(4): 493-7. Available at: https://www.engineeringletters.com/issues_v16/issue_4/index.html
[30] Li, T., Wang, H., & Lin, Y. (2024). Selection of renewable energy development path for sustainable development using a fuzzy MCDM based on cumulative prospect theory: the case of Malaysia. Scientific Reports, 14(1): 15082. DOI: https://doi.org/10.1038/s41598-024-65982-6
[31] Li, Y. (2022). One-switch Utility Functions and Applications: a Review Article. The Keizai Ronkyu, 173: 23-72. DOI: https://doi.org/10.15017/4796012
[32] Liu, A., Li, Z., Shang, W. L., & Ochieng, W. (2023). Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transportation Research Part A: Policy and Practice, 170, 103605. DOI: https://doi.org/10.1016/j.tra.2023.103605
[33] Liu, Y., & Koenig, S. (2005). Risk-sensitive planning with one-switch utility functions: Value iteration. In Proceedings of the twentieth AAAI conference on artificial intelligence (p. 993–999).
[34] Malakooti, B. B. (1993). A decision support system for discrete multiple-criteria problems: certainty, uncertainty, and hierarchical. Applied Mathematics and Computation, 54(2-3): 131-166. DOI:https://doi.org/10.1016/0096-3003(93)90056-K
[35] Marzouk, Mohamed & Mohammed Abdelkader, Eslam. (2019). On the use of multi-criteria decision-making methods for minimizing environmental emissions in construction projects. Decision Science Letters. 8. DOI:https://doi.org/10.5267/j.dsl.2019.6.003
[36] Maserrat, Z., et al. (2024). A Dempster–Shafer Enhanced Framework for Urban Road Planning Using a Model-Based Digital Twin and MCDM Techniques. ISPRS International Journal of Geo-Information, 13(9): 302. DOI: https://doi.org/10.3390/ijgi13090302
[37] Milani, A.S., Shanian, A., & El-Lahham, C. (2006). Using different ELECTRE methods in strategic planning in the presence of human behavioral resistance. Journal of Applied Mathematics and Decision Sciences, 2006. DOI: https://doi.org/10.1155/JAMDS/2006/10936
[38] Nafi'Shehab, Z., Faisal, R. M., & Ahmed, S. W. (2024). Multi-criteria decision making (MCDM) approach for identifying optimal solar farm locations: A multi-technique comparative analysis. Renewable Energy, 237: 121787. DOI: https://doi.org/10.1016/j.renene.2024.121787
[39] Narayanamoorthy, S., Ramya, L., Kalaiselvan, S., Kureethara, J. V., & Kang, D. (2021). Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions. Socio-Economic Planning Sciences, 76, 100996. DOI: https://doi.org/10.1016/j.seps.2020.100996
[40] Ozsahin, D.U., Gökcekus, H., Uzun, B., & LaMoreaux, J. W. (2021). Application of multi-criteria decision analysis in environmental and civil engineering, Springer International Publishing.
[41] Parvaneh, F., & Hammad, A. (2024). Application of Multi-Criteria Decision-Making (MCDM) to Select the Most Sustainable Power-Generating Technology. Sustainability, 16(8): 3287. DOI:https://doi.org/10.3390/su16083287
[42] Pinto-DelaCadena, P.A., Liern, V., & Vinueza-Cabezas, A. (2024). A Comparative Analysis of Multi-Criteria Decision Methods for Personnel Selection: A Practical Approach. Mathematics, 12(2): 324. DOI:https://doi.org/10.3390/math12020324
[43] Pohekar, S.D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4): 365-381. DOI:https://doi.org/10.1016/j.rser.2003.12.007
[44] Ren, H., Gao, W., Zhou, W., & Nakagami, K. I. (2009). Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan. Energy Policy, 37(12): 5484-5493. DOI:https://doi.org/10.1016/j.enpol.2009.08.014
[45] Roy, B. (1968). Classement et choix en présence de points de vue multiples (La methode ELECTRE). Revue Française d'informatique et de recherche opérationnelle, 2(8): 57-75.
[46] Roy, B. (1978). ELECTRE III: un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’études de recherche operationnelle, 20: 3-24.
[47] Roy, B., & Bertier, P. (1971). La Methode ELECTRE II: une Methode de Classement en Presence de Criteres Multiples., Note de Travail No. 142, Direction Scientifique. Group Metra, Paris.
[48] Roy, B., & Bouyssou, D. (1993). Aide multicritère à la décision: méthodes et cas (p. 695). Paris: Economica.
[49] Roy, B., & Hugonnard, J. C. (1982). Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. Transportation Research Part A: General, 16(4): 301-312. DOI:https://doi.org/10.1016/0191-2607(82)90057-7
[50] Seddiki, M., & Bennadji, A. (2019). Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building. Renewable and Sustainable Energy Reviews, 110: 101-117. DOI:https://doi.org/10.1016/j.rser.2019.04.046
[51] Sheng, C.L. (1984). A general utility function for decision-making. Mathematical Modelling, 5(4): 265-274. DOI: https://doi.org/10.1016/0270-0255(84)90005-8
[52] Subramanian, G. H., & Gershon, M. (1991). The Selection of Computer‐Aided Software Engineering Tools: A Multi‐Criteria Decision-Making Approach. Decision Sciences, 22(5): 1109-1123. DOI:https://doi/10.1111/j.1540-5915.1991.tb01909.x
[53] Taherdoost, H., & Madanchian, M. (2023). A Comprehensive Overview of the ELECTRE Method in Multi Criteria Decision-Making. Journal of Management Science & Engineering Research, 6(2): 5-16. DOI:https://doi.org/10.30564/jmser.v6i2.5637
[54] Tian, G., et al. (2023). A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems. Environmental Science and Pollution Research, 30(20): 57279-57301. DOI:https://doi.org/10.1007/s11356-023-26577-2
[55] Tiwari, R., Agrawal, S., & Kasdekar, D. K. (2020, February). Application of ELECTRE-I, II methods for EDM performance measures in manufacturing decision making. In IOP Conference Series: Materials Science and Engineering (Vol. 748, No. 1, p. 012015). IOP Publishing. DOI: 10.1088/1757-899X/748/1/012015
[56] Topaloğlu, F. (2024). Development of a new hybrid method for multi-criteria decision making (MCDM) approach: a case study for facility location selection. Operational Research, 24(4): 60. DOI:https://doi.org/10.1007/s12351-024-00871-4
[57] Väisänen, S., et al. (2016). Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. Journal of Cleaner Production, 137: 1330-1338. DOI:https://doi.org/10.1016/j.jclepro.2016.07.173
[58] Vasić, G. (2018). Application of multi criteria analysis in the design of energy policy: Space and water heating in households–City Novi Sad, Serbia. Energy Policy, 113: 410-419. DOI: 10.1016/j.enpol.2017.11.025
[59] von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behaviour. Princeton University Press, Princeton.
[60] Wu, J. Z., & Tiao, P. J. (2018). A validation scheme for intelligent and effective multiple criteria decision-making. Applied Soft Computing, 68: 866-872. DOI: https://doi.org/10.1016/j.asoc.2017.04.054
[61] Wu, Y., Xu, C., & Zhang, T. (2018). Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China. Energy, 147: 1227-1239. DOI:https://doi.org/10.1016/j.energy.2018.01.115
[62] Yang, Y., Ren, J., Solgaard, H. S., Xu, D., & Nguyen, T. T. (2018). Using multi‐criteria analysis to prioritize renewable energy home heating technologies. Sustainable Energy Technologies and Assessments, 29: 36-43. DOI: https://doi.org/10.1016/j.seta.2018.06.005
[63] Yu, W. (1992). ELECTRE TRI (aspects méthodologiques et manuel d'utilisation). Document- Université de Paris-Dauphine, LAMSADE, No. 74, Université Paris-Dauphine.
[64] Zeng, W., Zhou, H., & You, M. (2014). Risk-sensitive multiagent decision-theoretic planning based on MDP and one-switch utility functions. Mathematical Problems in Engineering. DOI: 10.1155/2014/697895
Published
2025-03-31
How to Cite
LI, Yuanxu. Environmental Policy Selection Based on Linear-Times-Exponential One-Switch Utility Function and ELECTRE I Method. Theoretical and Practical Research in Economic Fields, [S.l.], v. 16, n. 1, p. 5 - 17, mar. 2025. ISSN 2068-7710. Available at: <https://journals.aserspublishing.eu/tpref/article/view/8772>. Date accessed: 11 apr. 2025. doi: https://doi.org/10.14505/tpref.v16.1(33).01.