Environmental Policy Selection Based on Linear-Times-Exponential One-Switch Utility Function and ELECTRE I Method
Abstract
This paper examines how utility functions perform in tackling the multicriteria decision-making problem, especially one-switch utility function. Linear-times-exponential one-switch, exponential, and linear utility functions are implemented, which transforms corresponding criteria into utilities with ELECTRE I method. The detailed formulation of the decision model is presented. A numerical example about environmental policy selection is introduced to illustrate the use of the new decision model. With different wealth levels and utility functions for a policymaker, the inconsistent outranking policies illustrate the special characteristic of linear-times-exponential one-switch utility function whose initial wealth level has a significant impact on the outranking environmental policy. This study is also the first study applying one-switch utility function in address/ing multicriteria decision-making problem.
References
[2] Abbas, A.E., & Bell, D.E. (2015). Ordinal one-switch utility functions. Operations Research, 63(6): 1411-1419. DOI: https://doi.org/10.1287/opre.2015.1426
[3] Abbas, A.E., Bakır, N. O., Klutke, G.A., & Sun, Z. (2013). Effects of Risk Aversion on the Value of Information in Two-action Decision Problems. Decision Analysis, 10(3): 257-275. DOI:https://doi.org/10.1287/deca.2013.0275
[4] Abdulla, A., & Baryannis, G. (2024). A hybrid multi-criteria decision-making and machine learning approach for explainable supplier selection. Supply Chain Analytics, 7, 100074. DOI:https://doi.org/10.1016/j.sca.2024.100074
[5] Ait Bahom, S., Chraïbi, L., & Sefiani, N. (2025). A new personnel selection model for quality positions. Journal of Applied Research on Industrial Engineering, 12(1): 103-118. DOI:https://doi.org/10.22105/jarie.2024.420649.1567
[6] Akpahou, R., Mensah, L.D., Quansah, D. A., & Kemausuor, F. (2024). Long-term energy demand modeling and optimal evaluation of solutions to renewable energy deployment barriers in Benin: A LEAP-MCDM approach. Energy Reports, 12: 1888-1904. DOI: https://doi.org/10.1016/j.egyr.2024.07.055
[7] Akram, M., Ilyas, F., & Garg, H. (2021). ELECTRE-II method for group decision-making in Pythagorean fuzzy environment. Applied Intelligence, 1-19. DOI: https://doi.org/10.1007/s10489-021-02200-0
[8] Alizadeh, A., & Yousefi, S. (2019). An integrated Taguchi loss function–fuzzy cognitive map–MCGP with utility function approach for supplier selection problem. Neural Computing and Applications, 31(11): 7595-7614. DOI: https://doi.org/10.1007/s00521-018-3591-1
[9] Almeida, A.T. (2002). Multicriteria modelling for a repair contract problem based on utility and the ELECTRE I method. IMA Journal of Management Mathematics, 13(1): 29-37. DOI: 10.1093/imaman/13.1.29
[10] Almeida, A.T. (2005). Multicriteria modelling of repair contract based on utility and ELECTRE I method with dependability and service quality criteria. Annals of Operations Research, 138: 113-126. DOI:https://doi.org/10.1007/s10479-005-2448-z
[11] Almeida, A.T. (2007). Multicriteria decision model for outsourcing contracts selection based on utility function and ELECTRE method. Computers & Operations Research, 34(12): 3569-3574. DOI:https://doi.org/10.1016/j.cor.2006.01.003
[12] Alper, D., & Başdar, C. (2017). A comparison of TOPSIS and ELECTRE methods: an application on the factoring industry. Business and Economics Research Journal, 8(3): 627. DOI:https://doi.org/10.20409/berj.2017.70
[13] Anchugina, N. (2017). One-Switch Discount Functions. arXiv preprint arXiv:1702.02254. DOI:https://doi.org/10.48550/arXiv.1702.02254
[14] Babatunde, O.M., Munda, J.L., & Hamam, Y. (2019). Selection of a hybrid renewable energy systems for a low-income household. Sustainability, 11(16), 4282. DOI: https://doi.org/10.3390/su11164282
[15] Bakır, N.O. (2017). Value of information for decision makers with sumex and linear times exponential utility. Available at: https://hdl.handle.net/20.500.12939/1905
[16] Bakır, N.O., & Klutke, G. A. (2011). Information and Preference Reversals in Lotteries European Journal of Operational Research, 210(3): 752-756. DOI: https://doi.org/10.1016/j.ejor.2010.09.037
[17] Bell, D.E. (1988). One-switch utility functions and a measure of risk. Management Science, 34(12): 1416-1424. DOI: https://doi.org/10.1287/mnsc.34.12.1416
[18] Bell, D.E., & Fishburn, P. C. (2001). Strong one-switch utility. Management Science, 47(4): 601-604. DOI:https://doi.org/10.1287/mnsc.47.4.601.9825
[19] Brito, A.J., de Almeida, A. T., & Mota, C. M. (2010). A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory. European Journal of Operational Research, 200(3): 812-821. DOI: https://doi.org/10.1016/j.ejor.2009.01.016
[20] Carpitella S., Certa A., & Mario E. (2018). The ELECTRE I method to support the FMECA, IFAC-PapersOnLine, Volume 51(11): 459-464. DOI: https://doi.org/10.1016/j.ifacol.2018.08.361
[21] Chakraborty, S., Raut, R.D., Rofin, T.M., & Chakraborty, S. (2024). On solving a healthcare supplier selection problem using MCDM methods in intuitionistic fuzzy environment. Opsearch, 1-29. DOI:https://doi.org/10.1007/s12597-023-00733-1
[22] Denuit, M.M., Eeckhoudt, L., & Schlesinger, H. (2013). When Ross meets Bell: the linex utility function. Journal of Mathematical Economics, 49(2): 177-182. DOI: https://doi.org/10.1016/j.jmateco.2013.01.006
[23] Džiugaitė-Tumėnienė, R., Motuzienė, V., Šiupšinskas, G., Čiuprinskas, K., & Rogoža, A. (2017). Integrated assessment of energy supply system of an energy-efficient house. Energy and Buildings, 138: 443-454. DOI:https://doi.org/10.1016/j.enbuild.2016.12.058
[24] Ekholm, T., et al. (2014). A multi-criteria analysis of climate, health and acidification impacts due to greenhouse gases and air pollution—The case of household-level heating technologies. Energy Policy, 74: 499-509. DOI: https://doi.org/10.1016/j.enpol.2014.07.002
[25] Farahani, R. Z., & Asgari, N. (2007). Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study. European Journal of Operational Research, 176(3): 1839-1858. DOI:https://doi.org/10.1016/j.ejor.2005.10.039
[26] Ferrer-Martí, L., Ferrer, I., Sánchez, E., & Garfí, M. (2018). A multi-criteria decision support tool for the assessment of household biogas digester programmes in rural areas. A case study in Peru. Renewable and Sustainable Energy Reviews, 95: 74-83. DOI: https://doi.org/10.1016/j.rser.2018.06.064
[27] Gottwald, D., Chocholáč, J., Kayacı Çodur, M., Čubranić-Dobrodolac, M., & Yazir, K. (2024). Z-Numbers-Based MCDM approach for personnel selection at institutions of higher education for transportation. Mathematics, 12(4): 523. DOI: https://doi.org/10.3390/math12040523
[28] Karbassi Yazdi, A., Tan, Y., Birau, R., Frank, D., & Pamučar, D. (2025). Sustainable solutions: using MCDM to choose the best location for green energy projects. International Journal of Energy Sector Management, 19(1): 146-180. DOI: https://doi.org/10.1108/IJESM-01-2024-0005
[29] Lee, S. K., Mogi, G., & Kim, J. W. (2008). Multi-criteria decision making for measuring relative efficiency of greenhouse gas technologies: AHP/DEA hybrid model approach. Engineering Letters, 16(4): 493-7. Available at: https://www.engineeringletters.com/issues_v16/issue_4/index.html
[30] Li, T., Wang, H., & Lin, Y. (2024). Selection of renewable energy development path for sustainable development using a fuzzy MCDM based on cumulative prospect theory: the case of Malaysia. Scientific Reports, 14(1): 15082. DOI: https://doi.org/10.1038/s41598-024-65982-6
[31] Li, Y. (2022). One-switch Utility Functions and Applications: a Review Article. The Keizai Ronkyu, 173: 23-72. DOI: https://doi.org/10.15017/4796012
[32] Liu, A., Li, Z., Shang, W. L., & Ochieng, W. (2023). Performance evaluation model of transportation infrastructure: Perspective of COVID-19. Transportation Research Part A: Policy and Practice, 170, 103605. DOI: https://doi.org/10.1016/j.tra.2023.103605
[33] Liu, Y., & Koenig, S. (2005). Risk-sensitive planning with one-switch utility functions: Value iteration. In Proceedings of the twentieth AAAI conference on artificial intelligence (p. 993–999).
[34] Malakooti, B. B. (1993). A decision support system for discrete multiple-criteria problems: certainty, uncertainty, and hierarchical. Applied Mathematics and Computation, 54(2-3): 131-166. DOI:https://doi.org/10.1016/0096-3003(93)90056-K
[35] Marzouk, Mohamed & Mohammed Abdelkader, Eslam. (2019). On the use of multi-criteria decision-making methods for minimizing environmental emissions in construction projects. Decision Science Letters. 8. DOI:https://doi.org/10.5267/j.dsl.2019.6.003
[36] Maserrat, Z., et al. (2024). A Dempster–Shafer Enhanced Framework for Urban Road Planning Using a Model-Based Digital Twin and MCDM Techniques. ISPRS International Journal of Geo-Information, 13(9): 302. DOI: https://doi.org/10.3390/ijgi13090302
[37] Milani, A.S., Shanian, A., & El-Lahham, C. (2006). Using different ELECTRE methods in strategic planning in the presence of human behavioral resistance. Journal of Applied Mathematics and Decision Sciences, 2006. DOI: https://doi.org/10.1155/JAMDS/2006/10936
[38] Nafi'Shehab, Z., Faisal, R. M., & Ahmed, S. W. (2024). Multi-criteria decision making (MCDM) approach for identifying optimal solar farm locations: A multi-technique comparative analysis. Renewable Energy, 237: 121787. DOI: https://doi.org/10.1016/j.renene.2024.121787
[39] Narayanamoorthy, S., Ramya, L., Kalaiselvan, S., Kureethara, J. V., & Kang, D. (2021). Use of DEMATEL and COPRAS method to select best alternative fuel for control of impact of greenhouse gas emissions. Socio-Economic Planning Sciences, 76, 100996. DOI: https://doi.org/10.1016/j.seps.2020.100996
[40] Ozsahin, D.U., Gökcekus, H., Uzun, B., & LaMoreaux, J. W. (2021). Application of multi-criteria decision analysis in environmental and civil engineering, Springer International Publishing.
[41] Parvaneh, F., & Hammad, A. (2024). Application of Multi-Criteria Decision-Making (MCDM) to Select the Most Sustainable Power-Generating Technology. Sustainability, 16(8): 3287. DOI:https://doi.org/10.3390/su16083287
[42] Pinto-DelaCadena, P.A., Liern, V., & Vinueza-Cabezas, A. (2024). A Comparative Analysis of Multi-Criteria Decision Methods for Personnel Selection: A Practical Approach. Mathematics, 12(2): 324. DOI:https://doi.org/10.3390/math12020324
[43] Pohekar, S.D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4): 365-381. DOI:https://doi.org/10.1016/j.rser.2003.12.007
[44] Ren, H., Gao, W., Zhou, W., & Nakagami, K. I. (2009). Multi-criteria evaluation for the optimal adoption of distributed residential energy systems in Japan. Energy Policy, 37(12): 5484-5493. DOI:https://doi.org/10.1016/j.enpol.2009.08.014
[45] Roy, B. (1968). Classement et choix en présence de points de vue multiples (La methode ELECTRE). Revue Française d'informatique et de recherche opérationnelle, 2(8): 57-75.
[46] Roy, B. (1978). ELECTRE III: un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’études de recherche operationnelle, 20: 3-24.
[47] Roy, B., & Bertier, P. (1971). La Methode ELECTRE II: une Methode de Classement en Presence de Criteres Multiples., Note de Travail No. 142, Direction Scientifique. Group Metra, Paris.
[48] Roy, B., & Bouyssou, D. (1993). Aide multicritère à la décision: méthodes et cas (p. 695). Paris: Economica.
[49] Roy, B., & Hugonnard, J. C. (1982). Ranking of suburban line extension projects on the Paris metro system by a multicriteria method. Transportation Research Part A: General, 16(4): 301-312. DOI:https://doi.org/10.1016/0191-2607(82)90057-7
[50] Seddiki, M., & Bennadji, A. (2019). Multi-criteria evaluation of renewable energy alternatives for electricity generation in a residential building. Renewable and Sustainable Energy Reviews, 110: 101-117. DOI:https://doi.org/10.1016/j.rser.2019.04.046
[51] Sheng, C.L. (1984). A general utility function for decision-making. Mathematical Modelling, 5(4): 265-274. DOI: https://doi.org/10.1016/0270-0255(84)90005-8
[52] Subramanian, G. H., & Gershon, M. (1991). The Selection of Computer‐Aided Software Engineering Tools: A Multi‐Criteria Decision-Making Approach. Decision Sciences, 22(5): 1109-1123. DOI:https://doi/10.1111/j.1540-5915.1991.tb01909.x
[53] Taherdoost, H., & Madanchian, M. (2023). A Comprehensive Overview of the ELECTRE Method in Multi Criteria Decision-Making. Journal of Management Science & Engineering Research, 6(2): 5-16. DOI:https://doi.org/10.30564/jmser.v6i2.5637
[54] Tian, G., et al. (2023). A survey of multi-criteria decision-making techniques for green logistics and low-carbon transportation systems. Environmental Science and Pollution Research, 30(20): 57279-57301. DOI:https://doi.org/10.1007/s11356-023-26577-2
[55] Tiwari, R., Agrawal, S., & Kasdekar, D. K. (2020, February). Application of ELECTRE-I, II methods for EDM performance measures in manufacturing decision making. In IOP Conference Series: Materials Science and Engineering (Vol. 748, No. 1, p. 012015). IOP Publishing. DOI: 10.1088/1757-899X/748/1/012015
[56] Topaloğlu, F. (2024). Development of a new hybrid method for multi-criteria decision making (MCDM) approach: a case study for facility location selection. Operational Research, 24(4): 60. DOI:https://doi.org/10.1007/s12351-024-00871-4
[57] Väisänen, S., et al. (2016). Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. Journal of Cleaner Production, 137: 1330-1338. DOI:https://doi.org/10.1016/j.jclepro.2016.07.173
[58] Vasić, G. (2018). Application of multi criteria analysis in the design of energy policy: Space and water heating in households–City Novi Sad, Serbia. Energy Policy, 113: 410-419. DOI: 10.1016/j.enpol.2017.11.025
[59] von Neumann, J., & Morgenstern, O. (1944). Theory of Games and Economic Behaviour. Princeton University Press, Princeton.
[60] Wu, J. Z., & Tiao, P. J. (2018). A validation scheme for intelligent and effective multiple criteria decision-making. Applied Soft Computing, 68: 866-872. DOI: https://doi.org/10.1016/j.asoc.2017.04.054
[61] Wu, Y., Xu, C., & Zhang, T. (2018). Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China. Energy, 147: 1227-1239. DOI:https://doi.org/10.1016/j.energy.2018.01.115
[62] Yang, Y., Ren, J., Solgaard, H. S., Xu, D., & Nguyen, T. T. (2018). Using multi‐criteria analysis to prioritize renewable energy home heating technologies. Sustainable Energy Technologies and Assessments, 29: 36-43. DOI: https://doi.org/10.1016/j.seta.2018.06.005
[63] Yu, W. (1992). ELECTRE TRI (aspects méthodologiques et manuel d'utilisation). Document- Université de Paris-Dauphine, LAMSADE, No. 74, Université Paris-Dauphine.
[64] Zeng, W., Zhou, H., & You, M. (2014). Risk-sensitive multiagent decision-theoretic planning based on MDP and one-switch utility functions. Mathematical Problems in Engineering. DOI: 10.1155/2014/697895
Non-Exclusive License under Attribution 4.0 International Public License (CC BY 4.0):
This ‘Article’ is distributed under the terms of the license CC-BY 4.0., which lets others distribute, remix, adapt, and build upon this article, even commercially, as long as they credit this article for the original creation. ASERS Publishing will be acknowledged as the first publisher of the Article and a link to the appropriate bibliographic citation (authors, article title, volume issue, page numbers, DOI, and the link to the Published Article on ASERS Publishing’ Platform) must be maintained.