From Maxwell’s equations to Quantum Mechanics: an introduction

  • David Carfi` MIFT Department, University of Messina, Italy

Abstract

In this elementary but original introduction to the close relationship between the quantum mechanics in complex tempered distribution space and Maxwell’s electromagnetism, we start from an elementary (but representative) case. We prove that, in the chosen particular case, the Maxwell’s equations in empty space can be reformulated as a unique equation inside a subspace of solenoidal smooth vector fields. Moreover, we reinterpret the curl operator as the magnitude of the wave-vector operator. The unique complex equation condensing the two curl Maxwell’s equations reveals to be a faithful representation of the quantization of the Einstein’s energy relation for photons, or, if preferred, the relativistic SchrÅNodinger equation for a massless particle.

References

[1]. José Barros-Neto. An introduction to the theory of distributions, volume 14 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1973.
[2]. Nino Boccara. Functional analysis. Academic Press, Inc., Boston, MA, 1990. An introduction for physicists.
[3]. N. Bourbaki. Eléments de mathématique. XVI. Premiére partie: Les structures fondamentales de l’analyse. Livre III. Topologie générale (fascicule de résultats), volume No. 1196 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann & Cie, Paris, 1953.
[4]. N. Bourbaki. Eléments de mathématique. XIX. Premiére partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. (Fascicule de résultats.), volume No. 1230 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann & Cie, Paris, 1955.
[5]. N. Bourbaki. Eléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces L p, volume No. 1175 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann, Paris, 1965. Deuxiéme édition revue et augmentée.
[6]. D. Carfì. S-Ultralinear Algebra in the space of tempered distributions. AAPP — Physical, Mathematical, and Natural Sciences, 78-79(1):105–130, 2001. http://cab.unime.it/mus/664/
[7]. D. Carfì. SL-ultradifferentiable Manifolds. Analele Universitatii Bucuresti - Seria Informatica, 50:21–31, 2001. Proceedings of the Centellian of Vranceanu.
[8]. D. Carfì. Dirac-orthogonality in the space of tempered distributions. Journal of Computational and Applied Mathematics, 153(1-2):99–107, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00634-9
[9]. D. Carfì. S-ultralinear operators in Quantum Mechanics. In M. Moreau, E. Hideg, K. Martinàs, and D. Meyer, editors, Complex systems in natural and social sciences. (Proceedings of the 7th Workshop on Complex Systems in Natural and Social Sciences, Màtrafured, Hungary, September 26-29, 2002), pages 33–46. ELFT, Budapest, 2003.
[10]. D. Carfì. S-linear operators in quantum Mechanics and in Economics. Applied Sciences (APPS), 6(1):7–20, 2004. http://www.mathem.pub.ro/apps/v06/A06.htm
[11]. D. Carfì. Tangent spaces on S-manifolds. Differential Geometry Dynamical Systems, 6:1–13, 2004. http://www.mathem.pub.ro/dgds/v06/D06-CAR3.pdf
[12]. D. Carfì. S-diagonalizable operators in Quantum Mechanics. Glasnik Mathematicki, 40(2):261–301, 2005. http://dx.doi.org/10.3336/gm.40.2.08
[13]. D. Carfì. Quantum statistical systems with a continuous range of states. In M. Primicerio, R. Spigler, and V. Valente, editors, Applied and Industrial Mathematics in Italy (Proceedings of the 7th Conference,Venice, Italy, 20 – 24 September 2004), volume 69 of Series on Advances in Mathematics for Applied Sciences, pages 189–200. World Scientific, 2005. http://dx.doi.org/10.1142/9789812701817_0018
[14]. D. Carfì. Feynman’s transition amplitudes in the space S’n. AAPP — Physical, Mathematical, and Natural Sciences, 85(1):1–10, 2007. http://dx.doi.org/10.1478/C1A0701007
[15]. D. Carfì. S-Linear Algebra in Economics and Physics. Applied Sciences (APPS), 9:48–66, 2007. http://www.mathem.pub.ro/apps/v09/A09-CA.pdf
[16]. D. Carfì. Topological characterizations of S-linearity. AAPP — Physical, Mathematical, and Natural Sciences, 85(2):1–16, 2007. http://dx.doi.org/10.1478/C1A0702005
[17]. D. Carfì. Superpositions in Prigogine’s approach to irreversibility for physical and financial applications. AAPP — Physical, Mathematical, and Natural Sciences, 86(S1):1–13, 2008. https://dx.doi.org/10.1478/C1S0801005
[18]. D. Carfì. The pointwise Hellmann-Feynman theorem. AAPP — Physical, Mathematical, and Natural Sciences, 88(1):1–14, 2010. http://dx.doi.org/10.1478/C1A1001004
[19]. D. Carfì. Relativistic Free Schrödinger Equation for Massive Particles in Schwartz Distribution Spaces. Symmetry, 15(11):1984, 2023. https://doi.org/10.3390/sym15111984
[20]. D. Carfì. Relativistic Schrödinger equation and probability currents for free particles. Proceedings of the International Geometry Center, 17(1): 99-131, 2024. https://doi.org/10.15673/pigc.v17i1.2597
[21]. D. Carfì, A. Caterino, and R. Ceppitelli. State preference models and jointly continuous utilities. In APLIMAT 2016 - 15th Conference on Applied Mathematics 2016, Proceedings, volume 1, pages 163–176. Slovak University of Technology in Bratislava, 2016. http://www.proceedings.com/29878.html
[22]. D. Carfì and C. Germanà. Some properties of a new product in S’n. Journal of Computational and Applied Mathematics, 153(1-2):109–118, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00635-0
[23]. D. Carfì and M. Magaudda. Superpositions in Distributions spaces. AAPP — Physical, Mathematical, and Natural Sciences, 85(2):1–14, 2007. http://dx.doi.org/10.1478/C1A0702006
[24]. J. Dieudonné. La dualité dans les espaces vectoriels topologiques. Ann. Sci. Ecolé Norm. Sup. (3), 59:107–139, 1942. http://www.numdam.org/item?id=ASENS_1942_3_59_107_0
[25]. P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford, the Clarendon Press, 1930.
[26]. J. Horvàth. Topological vector spaces and distributions. Vol. I. Addison Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[27]. S. Kesavan. Topics in functional analysis and applications. John Wiley & Sons, Inc., New York, 1989.
[28]. L. Schwartz. Théorie des Distributions. Hermann, Paris, 1966.
[29]. L. Schwartz. Application of distributions to the theory of elementary particles in quantum mechanics. Gordon and Breach, New York, 1968.
[30]. Laurent Schwartz. Mathematics for the physical sciences. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.; Hermann Editeurs des Sciénces et des Arts, Paris, 1966.
Published
2024-12-31
How to Cite
CARFI`, David. From Maxwell’s equations to Quantum Mechanics: an introduction. Journal of Mathematical Economics and Finance, [S.l.], v. 10, n. 2, p. 67 - 83, dec. 2024. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/8864>. Date accessed: 30 may 2025. doi: https://doi.org/10.14505/jmef.v10.2(19).03.