From Schrödinger equation to tempered distribution space on Minkowski chronotope and Schwartz Linear Algebra

Abstract

In this paper, we propose a rational and almost obliged path leading us from the most natural assumption regarding the SchrÅNodinger wave functions (wave functions classically belonging to the domain of the classic Schrödinger equation) to the space of tempered distributions defined upon the Minkowski space time. It’s extremely natural to consider the space E of complex valued smooth functions as the natural domain of the Schrödinger equation, as it was the obvious implicit assumption of any partial differential equation with constant coefficients at the time of Schrödinger himself. The orthodox Born interpretation of the normalized wave functions and the intervention of von Neumann (a Hilbert‘s pupil) have deviated the straightforward understanding of that domain towards the unnecessary and unnatural Hilbert space L2. The Hilbert space of square integrable functions is clearly incompatible with any partial differential equation, which would require at least Sobolev Spaces to live in; unfortunately, the inner product of the Sobolev space H2 is not good for quantum mechanics and the de Broglie solutions of the Schrödinger equation do not belong to L2.


We show in this article that moving inside the very good space E - and finally inside the huge tempered distribution space S′ - represents the first framework in which any desirable property of the key characters and actors of basic Quantum Mechanics is satisfied.

References

[1] José Barros-Neto. An introduction to the theory of distributions, volume 14 of Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1973.
[2] Nino Boccara. Functional analysis. Academic Press, Inc., Boston, MA, 1990. An introduction for physicists.
[3] N. Bourbaki. Eléments de mathématique. XVI. Premiére partie: Les structures fondamentales de l’analyse. Livre III. Topologie générale (fascicule de résultats), volume No. 1196 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann & Cie, Paris, 1953.
[4] N. Bourbaki. Eléments de mathématique. XIX. Premiére partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. (Fascicule de résultats.), volume No. 1230 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann & Cie, Paris, 1955.
[5] N. Bourbaki. Eléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces L p, volume No. 1175 of Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics]. Hermann, Paris, 1965. Deuxiéme édition revue et augmentée.
[6] D. Carfì. S-Ultralinear Algebra in the space of tempered distributions. AAPP — Physical, Mathematical, and Natural Sciences, 78-79(1):105–130, 2001. http://cab.unime.it/mus/664/
[7] D. Carfì. SL-ultradifferentiable Manifolds. Analele Universitatii Bucuresti - Seria Informatica, 50:21–31, 2001. Proceedings of the Centellian of Vranceanu.
[8] D. Carfì. Dirac-orthogonality in the space of tempered distributions. Journal of Computational and Applied Mathematics, 153(1-2):99–107, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00634-9
[9] D. Carfì. S-ultralinear operators in Quantum Mechanics. In M. Moreau, E. Hideg, K. Martinàs, and D. Meyer, editors, Complex systems in natural and social sciences. (Proceedings of the 7th Workshop on Complex Systems in Natural and Social Sciences, Màtrafured, Hungary, September 26-29, 2002), pages 33–46. ELFT, Budapest, 2003.
[10] D. Carfì. S-linear operators in quantum Mechanics and in Economics. Applied Sciences (APPS), 6(1):7–20, 2004. http://www.mathem.pub.ro/apps/v06/A06.htm
[11] D. Carfì. Tangent spaces on S-manifolds. Differential Geometry Dynamical Systems, 6:1–13, 2004. http://www.mathem.pub.ro/dgds/v06/D06-CAR3.pdf
[12] D. Carfì. S-diagonalizable operators in Quantum Mechanics. Glasnik Mathematicki, 40(2):261–301, 2005. http://dx.doi.org/10.3336/gm.40.2.08
[13] D. Carfì. Quantum statistical systems with a continuous range of states. In M. Primicerio, R. Spigler, and V. Valente, editors, Applied and Industrial Mathematics in Italy (Proceedings of the 7th Conference,Venice, Italy, 20 – 24 September 2004), volume 69 of Series on Advances in Mathematics for Applied Sciences, pages 189–200. World Scientific, 2005. http://dx.doi.org/10.1142/9789812701817_0018
[14] D. Carfì. Feynman’s transition amplitudes in the space S’n. AAPP — Physical, Mathematical, and Natural Sciences, 85(1):1–10, 2007. http://dx.doi.org/10.1478/C1A0701007
[15] D. Carfì. S-Linear Algebra in Economics and Physics. Applied Sciences (APPS), 9:48–66, 2007. http://www.mathem.pub.ro/apps/v09/A09-CA.pdf
[16] D. Carfì. Topological characterizations of S-linearity. AAPP — Physical, Mathematical, and Natural Sciences, 85(2):1–16, 2007. http://dx.doi.org/10.1478/C1A0702005
[17] D. Carfì. Superpositions in Prigogine’s approach to irreversibility for physical and financial applications. AAPP — Physical, Mathematical, and Natural Sciences, 86(S1):1–13, 2008. https://dx.doi.org/10.1478/C1S0801005
[18] D. Carfì. The pointwise Hellmann-Feynman theorem. AAPP — Physical, Mathematical, and Natural Sciences, 88(1):1–14, 2010. http://dx.doi.org/10.1478/C1A1001004
[19] D. Carfì. Relativistic Free Schrödinger Equation for Massive Particles in Schwartz Distribution Spaces. Symmetry, 15(11):1984, 2023. https://doi.org/10.3390/sym15111984
[20] D. Carfì. Relativistic Schrödinger equation and probability currents for free particles. Proceedings of the International Geometry Center, 17(1): 99-131, 2024. https://doi.org/10.15673/pigc.v17i1.2597
[21] D. Carfì, A. Caterino, and R. Ceppitelli. State preference models and jointly continuous utilities. In APLIMAT 2016 - 15th Conference on Applied Mathematics 2016, Proceedings, volume 1, pages 163–176. Slovak University of Technology in Bratislava, 2016. http://www.proceedings.com/29878.html
[22] D. Carfì and C. Germanà. Some properties of a new product in S’n. Journal of Computational and Applied Mathematics, 153(1-2):109–118, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00635-0
[23] D. Carfì and M. Magaudda. Superpositions in Distributions spaces. AAPP — Physical, Mathematical, and Natural Sciences, 85(2):1–14, 2007. http://dx.doi.org/10.1478/C1A0702006
[24] J. Dieudonné. La dualité dans les espaces vectoriels topologiques. Ann. Sci. Ecolé Norm. Sup. (3), 59:107–139, 1942. http://www.numdam.org/item?id=ASENS_1942_3_59_107_0
[25] P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford, the Clarendon Press, 1930.
[26] J. Horvàth. Topological vector spaces and distributions. Vol. I. Addison Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
[27] S. Kesavan. Topics in functional analysis and applications. John Wiley & Sons, Inc., New York, 1989.
[28] L. Schwartz. Théorie des Distributions. Hermann, Paris, 1966.
[29] L. Schwartz. Application of distributions to the theory of elementary particles in quantum mechanics. Gordon and Breach, New York, 1968.
[30] Laurent Schwartz. Mathematics for the physical sciences. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont.; Hermann Editeurs des Sciénces et des Arts, Paris, 1966.
Published
2024-06-30
How to Cite
CARFI’, David. From Schrödinger equation to tempered distribution space on Minkowski chronotope and Schwartz Linear Algebra. Journal of Mathematical Economics and Finance, [S.l.], v. 10, n. 1, p. 65 - 81, june 2024. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/8572>. Date accessed: 13 oct. 2024. doi: https://doi.org/10.14505/jmef.v10.1(18).04.