Probabilistic puzzle: toward a solution of Goldbach’s conjecture?

  • Rosario D’Amico MPS Bank, Italy

Abstract




This paper aims to provide a set of considerations that allow us to see a possible solution to the problematic issue of Goldbach’s “strong” conjecture, which amounts to asserting that any even natural number greater than 2 can be written as the sum of two prime numbers that are not necessarily distinct. This is by adopting a probabilistic method by far easier attempts than the classical ones already present in literature.




References

[1]. BANESCU M. (2014), On the function π(x), in www.anstuocmath.ro/mathematics/vol22-1/Banescu_M.pdf . Available also at: https://www.researchgate.net/publication/276126753_On_the_Function_px. DOI:10.2478/auom-2014-0002.
[2]. BONAVOGLIA P. (2017), 1 è un numero primo, in www.crittologia.eu/mate/1_primo.html.
[3]. D'AMICO R. (2018), Il Dio Paradossale e la Congettura di Goldbach, Di Nicolò Edizioni, Messina.
[4]. DU SAUTOY M. (2005), L'enigma dei numeri primi. L'ipotesi di Riemann, il più grande mistero della matematica, translation of C. Capararo, Biblioteca Univ. Rizzoli, Milano.
[5]. MARTIN B. (2013), La conjecture de Goldbach - Images des Mathématiques, in http://images.math.cnrs.fr/La-conjecture-de-Goldbach-1473.html
[6]. SPIEGEL, M., SRINIVASAN, A., & SCHILLER, J. (2000), Schaum's Outline of Theory and Problems of PROBABILITY AND STATISTICS. The Mc Graw-Hill Companies Inc.
Published
2023-12-31
How to Cite
D’AMICO, Rosario. Probabilistic puzzle: toward a solution of Goldbach’s conjecture?. Journal of Mathematical Economics and Finance, [S.l.], v. 9, n. 2, p. 51 - 65, dec. 2023. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/8311>. Date accessed: 30 oct. 2024. doi: https://doi.org/10.14505/jmef.v9.2(17).04.