Lecture notes of Relativistic Mechanics: Worldlines, times and velocities of a particle

  • David Carf`ı Department of Mathematics University of California Riverside, USA

Abstract




In these notes, we define and study some concepts from Special Relativistic Mechanics, in a differential geometric perspective. Our approach allows us to revisit and rethink some basic theoretical structures, in a way that reveals more feasible to developments in various directions, in particular in view of a better integration with Quantum Mechanics.




References

[1]. D. Carfì. Force fields and relativistic kinetic energy. Researchgate Paper, pages 1-6, 1989. https://dx.doi.org/10.13140/RG.2.1.3415.9447
[2]. D. Carfì. A conformally invariant characterization of constant mean curvature surfaces in 3-dimensional space forms. Researchgate Paper, pages 1-15, 1998. https://dx.doi.org/10.13140/RG.2.1.2023.7526
[3]. D. Carfì. On Pseudo-Riemannian manifolds with Minkowski index carrying skew symmetric Killing vectors Field. Rendiconti del Seminario Matematico di Messina, 5(series II):91-98, 1998
[4]. D. Carfì. Conformal transformations on framed Riemann manifolds with Kenmotsu structures. Researchgate Paper, pages 1-9, 1999. https://dx.doi.org/10.13140/RG.2.1.3405.5767
[5]. D. Carfì. A new kind of infinite-dimensional differentiable manifolds. Researchgate Paper, pages 1-15, 2000. https://dx.doi.org/10.13140/RG.2.1.3416.9680
[6]. D. Carfì. Skew Symmetric Killing Vector Fields on a Parakahelerian Manifold. Rendiconti del Seminario Matematico di Messina, 7(series II):117-124, 2000.
[7]. D. Carfì. Almost Hermitean Manifolds Structured by a Semi-Kahlerian connection. Researchgate Paper, pages 1-9, 2001. Presented in Proceedings of the International Session of the Geometric Seminar of the Moscow State University and Russian Academy of Sciences by the name of G. F. Laptev. https://dx.doi.org/10.13140/RG.2.1.4869.3205
[8]. D. Carfì. On some second order properties of torse forming vector fields. Differential Geometry - Dynamical Systems, 3(2):7-12, 2001. http://www.mathem.pub.ro/dgds/v03n2/D03-2-CARF.pdf
[9]. D. Carfì. SL-ultradifferentiable Manifolds. Analele Universitatii Bucuresti – Seria Informatica, 50:21-31, 2001. Proceedings of the Centellian of Vranceanu.
[10]. D. Carfì. On some Types of Vector Fields on Manifolds with Levi-Civita structure. AAPP | Physical, Mathematical, and Natural Sciences, 80(1):67-73, 2002. http://cab.unime.it/mus/628/
[11]. D. Carfì. New frameworks for the one consumer model: exterior differential calculus. Researchgate Paper, pages 1-11, 2003. https://dx.doi.org/10.13140/RG.2.1.4334.4720/1
[12]. D. Carfì. S-Differential Calculus for Microeconomics. Researchgate Paper, pages 1-13, 2003. https://dx.doi.org/10.13140/RG.2.1.3942.9208
[13]. D. Carfì. Tangent spaces on S-manifolds. Differential Geometry Dynamical Systems, 6:1-13, 2004. http://www.mathem.pub.ro/dgds/v06/D06-CAR3.pdf
[14]. D. Carfì. Structures on the space of financial events. AAPP | Physical, Mathematical, and Natural Sciences, 86(2):1-13, 2008. https://dx.doi.org/10.1478/C1A0802007
[15]. D. Carfì. Fibrations for financial dynamical systems. Researchgate Paper, pages 1-23, 2009. https://dx.doi.org/10.13140/RG.2.1.3119.6241
[16]. D. Carfì. Fibrations of financial events. Proceedings of the International Geometry Center - International Conference “Geometry in Odessa 2009", 25-30 May 2009, Odessa, Ukraine, 2(3):7-18, 2009.
[17]. D. Carfì. Fibrations on the financial events plane. Researchgate Paper, pages 1-20, 2009. https://dx.doi.org/10.13140/RG.2.1.2901.6081
[18]. D. Carfì. Fibred spaces and financial structures. Researchgate Paper, pages 1-31, 2011. https://dx.doi.org/10.13140/RG.2.1.2115.1764
[19]. D. Carfì. Financial Lie groups. In Proceedings of the International Conference RIGA 2011. Bucharest University, Bucharest, 2011.
[20]. D. Carfì. Lie group structures for _nancial evolutions. Researchgate Paper, pages 1-12, 2011. https://dx.doi.org/10.13140/RG.2.1.1376.9047
[21]. D. Carfì. Differential geometry and relativity theories: tangent vectors, derivatives, paths, 1-forms. Journal of Mathematical Economics and Finance, 2(1(2)):85-127, 2016. http://journals.aserspublishing.eu/jmef/article/view/590
[22]. D. Carfì. Differential Geometry and Relativity Theories vol 1. Tangent vectors, derivatives, paths, 1-forms. Lambert Academic Publishing, 2017. ISBN: 978-3-330-02885-2.
[23]. D. Carfì and K. Cvetko-Vah. Skew lattice structures on the financial events plane. Applied Sciences, 13:9-20, 2011. http://www.mathem.pub.ro/apps/v13/A13-ca.pdf
[24]. D. Carfì and E. Musso. T-transformations of Willmore isothermic surfaces. Rendiconti del Seminario Matematico di Messina, (series II):69-86, 2000. Conference in honor of P. Calapso.
[25]. W. D. Curtis and F. R. Miller. Differential Manifolds and Theoretical Physics. Pure and Applied Mathematics. Academic Press, 1986.
[26]. A. Einstein. The Collected Papers of Albert Einstein, Volume 6. The Berlin Years: Writings, 1914-1917. Princeton University Press, 1996.
[27]. P. A. Frontéri. The Geometry behind the Special Relativity Theory. Bachelor Project in Mathematics, 2012.
[28]. J. Gallier and J. Quaintance. Notes on Differential Geometry and Lie Groups (in print).
[29]. S. Hawking. Singularities and the geometry of spacetime. The European Physical Journal H, pages 413-503, 2014.
[30]. S. Lang. Introduction to Differentiable Manifolds. Springer, 2002.
[31]. G. L. Naber. The Geometry of Minkowski Spacetime. An Introduction to the Mathematics of the Special Theory of Relativity. Applied Mathematical Sciences. Springer, 2012.
[32]. R. Penrose. The Road to Reality: A Complete Guide to the Laws of the Universe. Jonathan Cape London, 2004.
[33]. L. W. Tu. An Introduction to Manifolds. Springer, 2010. Second Edition. https://dx.doi.org/10.1007/978-1-4419-7400-6
[34]. G. Walschap. Metric Structures in Differential Geometry. Graduate Texts in Mathematics. Springer, 2004.
Published
2020-06-30
How to Cite
CARF`I, David. Lecture notes of Relativistic Mechanics: Worldlines, times and velocities of a particle. Journal of Mathematical Economics and Finance, [S.l.], v. 6, n. 1, p. 57-76, june 2020. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/5771>. Date accessed: 02 jan. 2025. doi: https://doi.org/10.14505/jmef.v6.1(10).04.