Some thoughts on the Goldbach's Conjecture (Part III)

  • Rosario D’AMICO MPS Bank, Italy

Abstract

This work aims to formulate considerations to demonstrate the Goldbach's Conjecture by using a demonstration process by making it easier than the usual temps already present in literature.

References

[1] Banescu M., On the function π(x), in www.anstuocmath.ro/mathematics/vol22-1/Banescu_M.pdf , DOI:10.2478.
[2] Bonavoglia P., 1 è un numero primo?, in www.crittologia.eu/mate/1_primo.html , 2017.
[3] Clark M., Paradoxes from A to Z. Routledge, New York, 2002.
[4] Du Sautoy M., L'enigma dei numeri primi. L'ipotesi di Riemann, il più grande mistero della matematica, Bureau Biblioteca Univ. Rizzoli, 2005.
[5] Martin B., La conjecture de Goldbach - Images des Math_ematiques, CNRS, 2013, in http://images.math.cnrs.fr/La-conjecture-de-Goldbach-1473.html
[6] Spiegel M., Srinivasan A., & Schiller, J., Schaum's Outline of Theory and Problems of PROBABILITY AND STATISTICS. The Mc Graw-Hill Companies Inc, 2000.
[7] D'Amico R., Some thoughts on the Goldbach's Conjecture (Part I), Journal of Mathematical Economics and Finance, 4 (1(6)): 91-96, 2018.
[8] D'Amico R., Some thoughts on the Goldbach's Conjecture (Part II), Journal of Mathematical Economics and Finance, 4 (2(7)): 55-66, 2018.
Published
2019-06-30
How to Cite
D’AMICO, Rosario. Some thoughts on the Goldbach's Conjecture (Part III). Journal of Mathematical Economics and Finance, [S.l.], v. 5, n. 1, p. 49-54, june 2019. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/3937>. Date accessed: 22 jan. 2022.