Critical notes of Quantum Mechanics: Momentum Operators

  • David CARFI’ University of California Riverside, USA

Abstract

In this note, we examine critically some basic features of momentum operators, both in the case of simple spatial context and in the case of spacetime. The natural time for the domain H of the momentum operator The Laurent Schwartz space Sn endowed with its own semimetric topology and with the Dirac inner product



We emphasize that the right topology to consider is the standard Schwartz topology, not the topology induced by the above Dirac inner product which needs to provide probability issues and not continuity properties. The above choice for the space H satisfy at once some fundamental requirements of the theory:
0. all the functions of the space H are both smooth and square integrable;
1. the operator P reveals indeed a linear endomorphism everywhere defined upon
H;
2. the operator is continuous with respect to the Schwartz topology;
3. the operator P is uniquely extensible to the entire space of tempered distributions
Sn′ and this extension is continuous with respect to the standard topology of such distribution space.
4. The above unique extension shows the so-called de Broglie waves as natural eigenvectors, although those de Broglie waves are not square integrable.


The above third and fourth points induce us to consider that extension as the standard right choice for the momentum operator, not only because that extension contains in- side the previous operator defined on the Schwartz function space, but because - even more stringently - the space of temperate distributions allow us to define rigorously the fundamental concept of continuous quantum state basis and the concepts of Dirac orthogonality and Dirac normalizability for such type of bases. It happens, by the way, that some de Broglie families of quantum waves are indeed quantum basis of the space Sn′ and reveal Dirac orthogonal and Dirac normalizable.

References

[1]. I. Antoniou and I. Prigogine. Intrinsic irreversibility and integrability of dynamics. Physica, A192:443-464, 1993.
[2]. R. Balescu. Equilibrium and Nonequilibrium Statistical Mechanics. Wiley & Sons, New York, 1975.
[3]. J. Barros-Neto. An Introduction to the theory of distributions. Marcel Dekker, New York, 1973.
[4]. N. Boccara. Functional Analysis: An Introduction for Physicists. Academic Press, Boston, 1990.
[5]. N. Bourbaki. Topologie Générale. (Fascicule de Résultats). Hermann, Paris, 1953.
[6]. N. Bourbaki. Topological Vector Spaces. Hermann, Paris, 1955.
[7]. N. Bourbaki. Intégration. Chapitre 1 à 4. Hermann, Paris, 1965.
[8]. D. Carfì. S-Ultralinear Algebra in the space of tempered distributions. AAPP| Physical, Mathematical, and Natural Sciences, 78-79(1):105-130, 2001. http://cab.unime.it/mus/664/
[9]. D. Carfì. SL-ultradifferentiable Manifolds. Analele Universitatii Bucuresti - Seria Informatica, 50:21-31, 2001. Proceedings of the Centellian of Vranceanu. Available as Researchgate Paper at https://www.researchgate.net/publication/210189123_SL-ultradifferentiable_Manifolds
[10]. D. Carfì. Dirac-orthogonality in the space of tempered distributions. Journal of Computational and Applied Mathematics, 153(1-2):99-107, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00634-9
[11]. D. Carfì. S-ultralinear operators in Quantum Mechanics. In M. Moreau, E. Hideg, K. Martinàs, and D. Meyer, editors, Complex systems in natural and social sciences. (Proceedings of the 7th Workshop on Complex Systems in Natural and Social Sciences, Màtrafüred, Hungary, September 26-29, 2002), pages 33-46. ELFT, Budapest, 2003. http://www.oszk.hu/mnbwww/K/0723/S.HTML#010 Also available as Researchgate Paper at https://dx.doi.org/10.13140/RG.2.1.2609.0965
[12]. D. Carfì. S-linear operators in quantum Mechanics and in Economics. Applied Sciences (APPS), 6(1):7-20, 2004. http://www.mathem.pub.ro/apps/v06/A06.htm
[13]. D. Carfì. Tangent spaces on S-manifolds. Differential Geometry Dynamical Systems, 6:1-13, 2004. http://www.mathem.pub.ro/dgds/v06/D06-CAR3.pdf
[14]. D. Carfì. S-diagonalizable operators in Quantum Mechanics. Glasnik Mathematicki, 40(2):261-301, 2005. http://dx.doi.org/10.3336/gm.40.2.08
[15]. D. Carfì. Quantum statistical systems with a continuous range of states. In M. Primicerio, R. Spigler, and V. Valente, editors, Applied and Industrial Mathematics in Italy (Proceedings of the 7th Conference, Venice, Italy, 20 - 24 September 2004), volume 69 of Series on Advances in Mathematics for Applied Sciences, pages 189{200. World Scientific, 2005. http://dx.doi.org/10.1142/9789812701817_0018 . Also available as Researchgate Paper at https://www.researchgate.net/publication/210189113_Quantum_statistical_systems_with_a_continuous_range_of_states
[16]. D. Carfì. An S-Linear State Preference Model. In Communications to SIMAI, volume 1, pages 1-4, 2006. https://dx.doi.org/10.1685/CSC06037 . Also available, in extended version, as Researchgate Paper at https://dx.doi.org/10.13140/RG.2.1.1006.2800
[17]. D. Carfì. Dyson formulas for Financial and Physical evolutions in S’n. Communications to SIMAI Congress, 2:1-10, 2007. https://dx.doi.org/10.1685/CSC06156
[18]. D. Carfì. Feynman's transition amplitudes in the space S’n. AAPP | Physical, Mathematical, and Natural Sciences, 85(1):1-10, 2007. http://dx.doi.org/10.1478/C1A0701007
[19]. D. Carfì. S-Linear Algebra in Economics and Physics. Applied Sciences (APPS), 9:48-66, 2007. http://www.mathem.pub.ro/apps/v09/A09-CA.pdf
[20]. D. Carfì. Topological characterizations of S-linearity. AAPP | Physical, Mathematical, and Natural Sciences, 85(2):1-16, 2007. http://dx.doi.org/10.1478/C1A0702005
[21]. D. Carfì. Superpositions in Prigogine's approach to irreversibility for physical and financial applications. AAPP | Physical, Mathematical, and Natural Sciences, 86(S1):1-13, 2008. https://dx.doi.org/10.1478/C1S0801005
[22]. D. Carfì. Foundations of Superposition Theory, volume 1. Il Gabbiano, 2010. ISBN: 978-88-96293-11-9. https://dx.doi.org/10.13140/RG.2.1.3352.2642
[23]. D. Carfì. The pointwise Hellmann-Feynman theorem. AAPP | Physical, Mathematical, and Natural Sciences, 88(1):1-14, 2010. http://dx.doi.org/10.1478/C1A1001004
[24]. D. Carfì. S-Bases in S-Linear Algebra. ArXiv Paper, pages 1-11, 2011. http://arxiv.org/abs/1104.3324
[25]. D. Carfì. Multiplicative operators in the spaces of Schwartz families. ArXiv Paper, pages 1{15, 2011. http://arxiv.org/abs/1104.3908
[26]. D. Carfì. Schwartz families in tempered distribution spaces. ArXiv Paper, pages 1-15, 2011. http://arxiv.org/abs/1104.4651
[27]. D. Carfì. Schwartz Linear operators in distribution spaces. ArXiv Paper, pages 1-14, 2011. http://arxiv.org/abs/1104.3380
[28]. D. Carfì. Spectral expansion of Schwartz linear operators. ArXiv Paper, pages 1-23, 2011. http://arxiv.org/abs/1104.3647
[29]. D. Carfì. Summable families in tempered distribution spaces. ArXiv Paper, pages 1-7, 2011. http://arxiv.org/abs/1104.4660
[30]. D. Carfì. Motivations and origins of Schwartz Linear Algebra in Quantum Mechanics. Researchgate Paper, pages 1-6, 2014. https://dx.doi.org/10.13140/2.1.1447.1361
[31]. D. Carfì. Quantum Mechanics and Dirac Calculus in Schwartz Distribution Spaces, vol. 1. Superpositions in Distribution Spaces, Postulates of Quantum Mechanics in S’n, Schwartz Linear Algebra, S-Representation in Quantum Mechanics, Dirac Orthogonality, S-Linear Quantum Statistics. Il Gabbiano, 2014. https://dx.doi.org/10.13140/2.1.4959.1360
[32]. D. Carfì. Spectral expansion of Schwartz linear operators. Researchgate Paper, pages 1-23, 2015. https://dx.doi.org/10.13140/RG.2.1.3688.7762
[33]. D. Carfì. Differential Geometry and Relativity Theories: tangent vectors, derivatives, paths, 1-forms. Journal of Mathematical Economics and Finance, 2(1(2)):85-127, 2016. http://journals.aserspublishing.eu/jmef/article/view/590
[34]. D. Carfì. Differential Geometry and Relativity Theories. Vol.1. Tangent vectors, tangent maps, paths, 1-forms. Il Gabbiano, 2016. ISBN: 978-88-96293-22-5.
[35]. D. Carfì. Motivations and origins of Schwartz Linear Algebra in Quantum Mechanics. Journal of Mathematical Economics and Finance, 2(2(3)):67-76, 2016. https://journals.aserspublishing.eu/jmef/article/view/2404
[36]. D. Carfì. Differential Geometry and Relativity Theories vol 1. - Tangent vectors, derivatives, paths, 1-forms, vector fields. Lambert Academic Publishing, 2017. ISBN: 978-3-330-02885-2.
[37]. D. Carfì. Position operator. Journal of Mathematical Economics and Finance, 4(1(6)):79-87, 2018. https://journals.aserspublishing.eu/jmef/article/view/2404
[38]. D. Carfì, A. Caterino, and R. Ceppitelli. State preference models and jointly continuous utilities. In APLIMAT 2016 - 15th Conference on Applied Mathematics 2016, Proceedings, volume 1, pages 163-176. Slovak University of Technology in Bratislava, 2016. http://www.proceedings.com/29878.html
[39]. D. Carfì and C. Germanà. Some properties of a new product in S’n. Journal of Computational and Applied Mathematics, 153(1-2):109-118, 2003. 6th International Symposium on Orthogonal Polynomials, Special Functions and Applications. Elsevier. http://dx.doi.org/10.1016/S0377-0427(02)00635-0
[40]. D. Carfì and M. Magaudda. Superpositions in Distributions spaces. AAPP | Physical, Mathematical, and Natural Sciences, 85(2):1-14, 2007. http://dx.doi.org/10.1478/C1A0702006
[41]. D. Carfì and G. Orlando. Transposable Schwartz families. Researchgate Paper, pages 1-15, 2015. https://dx.doi.org/10.13140/RG.2.1.4561.8643
[42]. J.A. Dieudonné. La dualité dans les espaces vectoriels topologiques. Annales scietifiques de l' Ecole Normale Supérieure 3e série, 59:107-139, 1942.
[43]. J.A. Dieudonné and L. Schwartz. La dualité dans les espaces (F) and (LF). Annales de l'Institut Fourier, 1:61-101, 1949.
[44]. P.A.M. Dirac. The Principles of Quantum Mechanics. Oxford, the Clarendon Press, 1930.
[45]. J. Horvàth. Topological Vector Spaces and Distributions, volume 1. Addison- Wesley Publishing Company, 1966.
[46]. S. Kesavan. Topics in Functional Analysis and Applications. Wiley, New Delhi, 1989.
[47]. S. Lang. Real and functional analysis. Springer Verlag, 1993.
[48]. C. Miranda. Istituzioni di Analisi Funzionale. Unione Matematica Italiana, 1978.
[49]. W. Pauli. Die allgemeinen Prinzipien der Wellenmechanik. Springer Verlag, 1958.
[50]. R. Penrose. Quantum Mechanics: Foundations. Encyclopedia of Mathematical Physics, pages 260-265, 2006.
[51]. I. Prigogine. Non-Equilibrium Statistical Mechanics. Wiley, New York, 1962.
[52]. I. Prigogine. From Being to Becoming: Time and Complexity in the Physical Sciences. Freeman, San Francisco, 1980.
[53]. I. Prigogine. Le leggi del chaos. Laterza, Roma-Bari, 1993.
[54]. L. Schwartz. Functional Analysis. New York University, Courant Institute of Mathematical Sciences, 1964.
[55]. L. Schwartz. Mathematics for the Physical Sciences. Hermann and Addison-Wesley, 1966.
[56]. L. Schwartz. Théorie des Distributions. Hermann, Paris, 1966.
[57]. L. Schwartz. Application of distributions to the theory of elementary particles in quantum mechanics. Gordon and Breach, New York, 1968.
[58]. L. Schwartz. Analyse Hilbertienne. Hermann, Paris, 1979.
[59]. L. Schwartz. Oeuvres Scientifiques I, II, III. American Mathematical Society, 2011.
[60]. R. Shankar. Principles of Quantum Mechanics. Plenum Press, New York, 1994.
[61]. P. Shields. The Theory of Bernoulli Shifts. In Lectures in Mathematics. University of Chicago Press, Chicago, 1973.
[62]. F. Tréves. Topological Vector Spaces, Distributions and Kernels. Dover Books on Mathematics. Dover Publications, 2006.
[63]. K. Yosida. Functional Analysis (6th ed.). Classics in Mathematics. Springer, 1996.
[64]. E. Zeidler. Applied Functional Analysis, volume 1. Springer Verlag, 1995.
Published
2019-06-30
How to Cite
CARFI’, David. Critical notes of Quantum Mechanics: Momentum Operators. Journal of Mathematical Economics and Finance, [S.l.], v. 5, n. 1, p. 27-48, june 2019. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/3936>. Date accessed: 23 jan. 2022.