Some thoughts on the Goldbach's Conjecture (Part I)

  • Rosario D'Amico MPS Bank

Abstract

This work aims at formulating considerations to demonstrate the Goldbach's Conjecture by using a demonstration process by far easier than the usual attempts already present in literature.

References

[1] Banescu, M. On the function π(x). Retrieved from www.anstuocmath.ro/mathematics/vol22-1/Banescu_M.pdf.
[2] Bonavoglia, P. (2017). 1 è un numero primo? Retrieved from www.crittologia.eu/mate/1_primo.html
[3] Clark, M. (2002). Paradoxes from A to Z. Routledge, New York.
[4] Du Sautoy, M. (2005). L'enigma dei numeri primi. L'ipotesi di Riemann, il più grande mistero della matematica. Bureau Biblioteca Univ. Rizzoli.
[5] Martin, B. (2013). La conjecture de Goldbach - Images des Mathématiques, CNRS. Retrieved from http://images.math.cnrs.fr/La-conjecture-de-Goldbach-1473.html
[6] Spiegel, M., A. Srinivasan, and J. Schiller (2000). Schaum's Outline of Theory and Problems of PROBABILITY AND STATISTICS. The Mc Graw-Hill Companies Inc.
Published
2018-06-30
How to Cite
D'AMICO, Rosario. Some thoughts on the Goldbach's Conjecture (Part I). Journal of Mathematical Economics and Finance, [S.l.], v. 4, n. 1(6), p. 91 - 98, june 2018. ISSN 2458-0813. Available at: <https://journals.aserspublishing.eu/jmef/article/view/2405>. Date accessed: 22 apr. 2019. doi: https://doi.org/10.14505//jmef.v4.1(6).06.