AN EXTREME VALUE APPROACH IN EXCHANGE RATES MODELLING
Abstract
This paper proposed an extreme value approach to estimate the exchange rates volatility. We analyzed exchangerates of USD/EUR. We applied three models, one is the Block Maxima Method based on Fisher-Tippet theorem and the
other is the Peaks over Threshold (POT) Model which models the observed values exceeding a large threshold. The third
model is the classical model based on assumption about normal distribution of exchange rates returns. In the first method is
important to choose the number of blocks which we made by using graphical methods. In the second method is important to
find suitable threshold. The tool is the plot of the sample mean excess function and QQ-plot. The most appropriate model
was found by goodness of fit tests, choosing the highest value of the test. Using these three methods we calculated high
quantiles of exchange rates and compared results.
The Copyright Transfer Form to ASERS Publishing (The Publisher)
This form refers to the manuscript, which an author(s) was accepted for publication and was signed by all the authors.
The undersigned Author(s) of the above-mentioned Paper here transfer any and all copyright-rights in and to The Paper to The Publisher. The Author(s) warrants that The Paper is based on their original work and that the undersigned has the power and authority to make and execute this assignment. It is the author's responsibility to obtain written permission to quote material that has been previously published in any form. The Publisher recognizes the retained rights noted below and grants to the above authors and employers for whom the work performed royalty-free permission to reuse their materials below. Authors may reuse all or portions of the above Paper in other works, excepting the publication of the paper in the same form. Authors may reproduce or authorize others to reproduce the above Paper for the Author's personal use or for internal company use, provided that the source and The Publisher copyright notice are mentioned, that the copies are not used in any way that implies The Publisher endorsement of a product or service of an employer, and that the copies are not offered for sale as such. Authors are permitted to grant third party requests for reprinting, republishing or other types of reuse. The Authors may make limited distribution of all or portions of the above Paper prior to publication if they inform The Publisher of the nature and extent of such limited distribution prior there to. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in The Paper. This agreement becomes null and void if and only if the above paper is not accepted and published by The Publisher, or is with drawn by the author(s) before acceptance by the Publisher.