Applications of Machine Learning to Estimating the Sizes and Market Impact of Hidden Orders in the BRICS Financial Markets
Abstract
The research aims to investigate the role of hidden orders on the structure of the average market impact curves in the five BRICS financial markets. The concept of market impact is central to the implementation of cost-effective trading strategies during financial order executions. The literature is replicated using the data of visible orders from the five BRICS financial markets. We repeat the implementation of the literature to investigate the effect of hidden orders. We subsequently study the dynamics of hidden orders. The research applies machine learning to estimate the sizes of hidden orders. We revisit the methodology of the literature to compare the average market impact curves in which true hidden orders are added to visible orders to the average market impact curves in which hidden orders sizes are estimated via machine learning.
The study discovers that: (1) hidden orders sizes could be uncovered via machine learning techniques such as Generalized Linear Models (GLM), Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Random Forests (RF); and (2) there exist no set of market features that are consistently predictive of the sizes of hidden orders across different stocks. Artificial Neural Networks produce large R2 and small Mean Squared Error on the prediction of hidden orders of individual stocks across the five studied markets. Random Forests produce the most appropriate average price impact curves of visible and estimated hidden orders that are closest to the average market impact curves of visible and true hidden orders. In some markets, hidden orders produce a convex power-law far-right tail in contrast to visible orders which produce a concave power-law far-right tail. Hidden orders may affect the average price impact curves for orders of size less than the average order size; meanwhile, hidden orders may not affect the structure of the average price impact curves in other markets. The research implies ANN and RF as the recommended tools to uncover hidden orders.
References
[2] Alfonsi, A., Schied, A. 2010. Optimal trade execution and absence of price manipulations in limit order book models. SIAM Journal on Financial Mathematics, 1(1): 490–522. Available at: https://epubs.siam.org/doi/abs/ 10.1137/090762786
[3] Bouchaud, J.P. 2017. Price impact, capital fund management, encyclopedia of quantitative finance, John Wiley Sons Ltd. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061602.eqf18006
[4] Breiman, L. 2001. Random forests. Machine Learning, 45: 5–30. Available at: https://journals.sagepub.com/ doi/abs/10.1177/1536867X20909688?journalCode=stja
[5] Easely, D., Keifer, N.M., O’Hara, M. 2002. Is information risk a determinant of asset returns? Journal of Finance, 57(5): 2185-2221. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1996.tb04074.x
[6] Fan, R.E., Chen P.H., Lin C.J. 2005. Working set selection using second order information for training support vector machines. The Journal of Machine Learning Research, 6: 1871–1918. Available at: https://dl.acm.org/ doi/10.5555/2627435.2627437
[7] Farmer, J.D., Lillo, F. 2004. On the origin of power-law tails in price fluctuations. Quantitative Finance, 4: 7–11. Available at: https://docplayer.net/5525786-Large-stock-price-changes-volume-or-liquidity.html
[8] Gatheral, J. 2010. No-dynamic-arbitrage and market impact. Quantitative Finance, 10(7): 749-759. Available at: https://www.tandfonline.com/doi/abs/10.1080/14697680903373692
[9] Gatheral, J., Schied, A., Slynko, A. 2010. Transient linear price impact and Fredholm integral equations. Mathematical Finance, Forthcoming, 30 p. Available at: https://www.researchgate.net/publication/ 228231758_Transient_Linear_Price_Impact_and_ Fredholm_Integral_Equations
[10] Glosten, L.R., Milgrom, P.R. 1985. Bid, ask and transaction prices in a specialist market with heterogeneously informed traders. Journal of Financial Economics, 14(1): 71–100. Available at: https://econpapers.repec.org/article/ee
[11] Hagan, M.T., Menhaj, M. 1994. Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6): 989–993. Available at: https://ieeexplore.ieee.org/document/329697/
[12] Harvey, M., Hendricks, D., Gebbie, T., Wilcox, D. 2017. Deviations in expected price impact for small transaction volumes under fee restructuring, Elsevier B.V. Physica A, 471(1): 416-426. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0378437116308470?via%3Dihub
[13] Lillo, F., Mantegna, R., Farmer, J.D. 2003. Master curve for price-impact function. Nature, 421 (6919): 129-130. Available at: https://www.researchgate.net/publication/10957932_Master_Curve_for_Price-Impact_Function
[14] Marquardt, D. 1963. An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics, 11(2): 431–441. Available at: https://epubs.siam.org/doi/10.1137/0111030
[15] Nguyen, D., Widrow, B. 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. IJCNN International Joint Conference on Neural Networks, 21–26 pp. Available at: http://www-isl.stanford.edu/~widrow/papers/c1990improvingthe.pdf
[16] O’Hara, M. 1998. Market Microstructure Theory. Blackwell, Oxford. ISBN-10: 0631207619, ISBN-13: 978-0631207610, 300 p.
[17] Potters, M., Bouchaud, J.P. 2003. More statistical properties of order books and price impact. Physica, A: Statistical Mechanics and its Applications, 324 (1–2): 133-140. Available at: https://www.sciencedirect.com/ science/article/abs/pii/S0378437102018964
[18] Seber, G.A.F. 1977. Linear regression analysis. New York: Wiley. 2nd Edition. ISBN: 0471019674, 9780471019671, 465 p. Available at: Error! Hyperlink reference not valid.
[19] Vapnik, V. 1995. The nature of statistical learning theory. Springer, New York. ISBN: 0-387-98780-0. Available at: https://statisticalsupportandresearch.files.wordpress.com/2017/05/vladimir-vapnik-the-nature-of-statistical-learning-springer-2010.pdf
The Copyright Transfer Form to ASERS Publishing (The Publisher)
This form refers to the manuscript, which an author(s) was accepted for publication and was signed by all the authors.
The undersigned Author(s) of the above-mentioned Paper here transfer any and all copyright-rights in and to The Paper to The Publisher. The Author(s) warrants that The Paper is based on their original work and that the undersigned has the power and authority to make and execute this assignment. It is the author's responsibility to obtain written permission to quote material that has been previously published in any form. The Publisher recognizes the retained rights noted below and grants to the above authors and employers for whom the work performed royalty-free permission to reuse their materials below. Authors may reuse all or portions of the above Paper in other works, excepting the publication of the paper in the same form. Authors may reproduce or authorize others to reproduce the above Paper for the Author's personal use or for internal company use, provided that the source and The Publisher copyright notice are mentioned, that the copies are not used in any way that implies The Publisher endorsement of a product or service of an employer, and that the copies are not offered for sale as such. Authors are permitted to grant third party requests for reprinting, republishing or other types of reuse. The Authors may make limited distribution of all or portions of the above Paper prior to publication if they inform The Publisher of the nature and extent of such limited distribution prior there to. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in The Paper. This agreement becomes null and void if and only if the above paper is not accepted and published by The Publisher, or is with drawn by the author(s) before acceptance by the Publisher.