Forecasting Realized Volatility: A Review
Abstract
Modeling financial volatility is an important part of empirical finance. This paper provides a literature review of the most relevant volatility models, with a particular focus on forecasting models. We firstly discuss the empirical foundations of different kinds of volatility. The paper, then, analyses the non-parametric measure of volatility, named realized variance, and its empirical applications. A wide range of realized volatility models, both univariate and multivariate, is presented, such as time series models, MIDAS and GARCH-MIDAS models, Realized GARCH, and HEAVY models. We further discuss forecasting evaluation methods specifically suited for volatility models.
References
[2] Amihud, Y., and H. Mendelson. 1987. Trading mechanisms and stock returns: an empirical investigation. Journal of Finance, 42: 533–553. DOI: http://dx.doi.org/10.1111/j.1540-6261.1987.tb04567.x
[3] Andersen, T. G. 2009. Stochastic volatility in Encyclopedia of Complexity and Systems Science. Springer Verlag.
[4] Andersen, T. G., and T. Bollerslev. 1998. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Economic Review, 39: 885–905.
[5] Andersen, T. G., T. Bollerslev, P. Christoffersen, and F. X. Diebold. 2006. Volatility and correlation forecasting in Handbook of Economic Forecasting, 778–878. Amsterdam: North-Holland.
[6] Andersen, T. G., T. Bollerslev, F. X. Diebold, and H. Ebens. 2001. The distribution of realized stock return volatility. Journal of Financial Economics, 61: 43–76. DOI: https://doi.org/10.1016/S0304-405X(01)00055-1
[7] Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. 2000. Exchange rate returns standardized by realized volatility are (nearly) Gaussian. Multinational Finance Journal, 4: 159– 179.
[8] Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. 2001. The distribution of exchange rate volatility. Journal of American Statistical Association, 96: 42–55. DOI: https://doi.org/10.1198/016214501750332965
[9] Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys. 2003. Modeling and Forecasting Realized Volatility. Econometrica, 71: 579–625. DOI: http://dx.doi.org/10.1111/1468-0262.00418
[10] Andersen, T. G., T. Bollerslev, and N. Meddahi .2005. Correcting the Errors: Volatility Forecast Evaluation Using High-Frequency Data and Realized Volatilities. Econometrica, 73(1): 279–296. DOI: http://dx.doi.org/10.1111/j.1468-0262.2005.00572.x
[11] Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance, 9: 203–228. DOI: http://dx.doi.org/10.1111/1467-9965.00068
[12] Asai M., M. McAleer, and J. Yu. 2006. Multivariate stochastic volatility: A review. Econometric Reviews, 25: 145–175. DOI: https://doi.org/10.1080/07474930600713564
[13] Asgharian, H., C. Christiansen, and A. J. Hou. 2015. Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification. Journal of Financial Econometrics, 14(3): 617-642. DOI: https://doi.org/10.1093/jjfinec/nbv025
[14] Asgharian, H., A. J. Hou, AND F. Javed. 2013. The Importance of the Macroeconomic Variables in Forecasting Stock Return Variance: A GARCH-MIDAS Approach. Journal of Forecasting, 32: 600–612. DOI: https://doi.org/10.1002/for.2256
[15] Back, K. 1991. Asset pricing for general processes. Journal of Mathematical Economics, 20: 371–395. DOI: https://doi.org/10.1016/0304-4068(91)90037-T
[16] Baillie, R. T., Bollerslev, T., Mikkelsen, H.O. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1): 3–30. DOI: https://doi.org/10.1016/S0304-4076(95)01749-6
[17] Bandi, F. M., and J. R. Russell. 2005. Realized covariation, realized beta and microstructure noise. Unpublished paper, Graduate School of Business, University of Chicago.
[18] Bandi, F. M., and J. R. Russell. (2006). Volatility. in Handbook of Financial Engineering. Elsevier.
[19] Bandi, F. M., and J. R. Russell. 2007. Microstructure noise, realized volatility, and optimal sampling. Unpublished paper, Graduate School of Business, University of Chicago.
[20] Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2008. Designing realized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica, 76(6): 1481–1536. DOI: https://doi.org/10.3982/ECTA6495
[21] Barndorff-Nielsen, O. E., and N. Shephard. 2002a. Econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society, 64(2): 253–280. DOI: https://doi.org/10.1111/1467-9868.00336
[22] Barndorff-Nielsen, O. E., and N. Shephard. 2002b. Estimating Quadratic Variation Using Realised Variance. Journal of Applied Econometrics, 17(5) 457–477. DOI: https://doi.org/10.1002/jae.691
[23] Barndorff-Nielsen, O. E., and N. Shephard. 2004. Power and Bipower Variation with Stochastic Volatility and Jumps. Journal of Financial Econometrics, 2(1): 1–37. DOI: https://doi.org/10.1093/jjfinec/nbh001
[24] Barr, D. G. 2013. Value at Risk. Bank of England, Centre for Central Banking Studies.
[25] Baruník, J., and F. Čech. 2016. On the modelling and forecasting multivariate realized volatility: Generalized Heterogeneous Autoregressive (GHAR) model. Journal of Forecasting, 36(2): 181-206. DOI: https://doi.org/10.1002/for.2423
[26] Bauer, G. H., and K. Vorkink. 2011. Forecasting multivariate realized stock market volatility. Journal of Econometrics, 160(1): 93–101. DOI: https://doi.org/10.1016/j.jeconom.2010.03.021
[27] Bauwens, L., C. Hafner, and S. Laurent. 2012. Handbook of Volatility Models and Their Applications. Wiley Online Library. DOI: https://doi.org/10.1002/9781118272039.ch1
[28] Becker, R., A. Clements, and R. O’Neill. 2010. A Cholesky-MIDAS model for predicting stock portfolio volatility. Working paper, Centre for Growth and Business Cycle Research Discussion Paper Series.
[29] Black, F. 1976. Noise. Journal of Finance, 41(3): 529–543. DOI: https://doi.org/10.1111/j.1540-6261.1986.tb04513.x
[30] Blanco, C., and G. Ihle. 1999. How Good is Your VaR? Using Backtesting to Assess System Performance. Financial Engineering News, 11(8): 1–2.
[31] Bollen, B. E., and B. Inder. 2002. Estimating daily volatility in financial markets utilizing intraday data. Journal of Empirical Finance, 9(5): 551–562. DOI: https://doi.org/10.1016/S0927-5398(02)00010-5
[32] Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3): 307–327. DOI: https://doi.org/10.1016/0304-4076(86)90063-1
[33] Bollerslev, T. 1990. Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model,” The Review of Economics and Statistics, pp. 498–505.
[34] Bollerslev, T. 2009. Glossary to ARCH (GARCH). Working paper, Duke University.
[35] Bollerslev, T., R. F. Engle, and D. B. Nelson. 1994. ARCH models in Handbook of Econometrics. Elsevier Science, Amsterdam.
[36] Bollerslev, T., R. F. Engle, and J. M. Wooldridge. 1988. A capital asset pricing model with time-varying covariances. The Journal of Political Economy, 96(1): 116–131. DOI: http://dx.doi.org/10.1086/261527
[37] Bollerslev, T., and J. M. Wooldridge. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews, 11(2): 143–172. DOI: https://doi.org/10.1080/07474939208800229
[38] Bonato, M. 2009. Estimating the degrees of freedom of the Realized Volatility Wishart Autoregressive model. Working paper.
[39] Bonato, M., Caporin, M., Ranaldo, A. 2009. Forecasting realized (co)variances with a block structure Wishart autoregressive model. Working papers, Swiss National Bank.
[40] Cai, J. 1994. A Markov Model of Switching-Regime ARCH. Journal of Business and Economic Statistics, 12(3): 309–316. DOI: https://doi.org/10.2307/1392087
[41] Chan, L. K., J. Karceski, and J. Lakonishok. 1999. On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model. The Review of Financial Studies, 12(5): 937–974. DOI: https://doi.org/10.1093/rfs/12.5.937
[42] Chen, L. (1996). Stochastic Mean and Stochastic Volatility: A Four-Dimensional Term Structure of Interest Rates and Its Application to the Pricing of Derivative Securities. Financial Markets, Institutions, and Instruments, 5: 1–88.
[43] Christensen, B., and N. Prabhala. 1998. The relation between implied and realized volatility. Journal of Financial Economics, 50(2): 125–150. DOI: https://doi.org/10.1016/S0304-405X(98)00034-8
[44] Christiansen, C., M. Schmeling, and A. Schrimpf. 2012. A comprehensive look at financial volatility prediction by economic variables. Journal of Applied Econometrics, 27(6): 956–977. DOI: https://doi.org/10.1002/jae.2298
[45] Christoffersen, P. F. 1998. Evaluating interval forecasts. International Economic Review, 39(4): 841–862. DOI: https://doi.org/10.2307/2527341
[46] Clark, T. E., and K. D. West. 2007. Approximately normal tests for equal predictive accuracy in nested models. Journal of Econometrics, 138(1): 291–311. DOI: https://doi.org/10.1016/j.jeconom.2006.05.023
[47] Colacito, R., R. F. Engle, and E. Ghysels. 2011. A Component Model for Dynamic Correlations. Journal of Econometrics, 164(1): 45–59. DOI: https://doi.org/10.1016/j.jeconom.2011.02.013
[48] Conrad, C., and K. Loch. 2014. Anticipating Long-Term Stock Market Volatility. Journal of Applied Econometrics, 30(7): 1090–1114. DOI: https://doi.org/10.1002/jae.2404
[49] Corsi, F. 2009. A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, 7: 174–196. DOI: http://dx.doi.org/10.2139/ssrn.626064
[50] De Pooter, M., M. Martens, and D. Van Dijk. 2008. Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data - But Which Frequency to Use? Econometric Reviews, 27: 199–229. DOI: https://doi.org/10.1080/07474930701873333
[51] Diebold, F. X., and R. S. Mariano. 1995. Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253–263. DOI: https://doi.org/10.1080/07350015.1995.10524599
[52] Ebens, H. 1999. Realized Stock Index Volatility. Working Paper No. 420, Department of Economics, Johns Hopkins University, Baltimore.
[53] Engle, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4): 987–1007. DOI: https://doi.org/10.2307/1912773
[54] Engle, R. F. 2002. Dynamic conditional correlation: a simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20(3): 339–350. DOI: https://doi.org/10.1198/073500102288618487
[55] Engle, R. F., AND G. M. Gallo. 2006. A multiple indicators model for volatility using intra-daily data. Journal of Econometrics, 131: 3–27. DOI: https://doi.org/10.1016/j.jeconom.2005.01.018
[56] Engle, R. F., E. Ghysels, and B. Sohn. 2013. Stock Market Volatility and Macroeconomic Fundamentals. Review of Economics and Statistics, 95(3) 776–797. DOI: https://doi.org/10.1162/REST_a_00300
[57] Engle, R. F., and K. F. Kroner. 1995. Multivariate simultaneous generalized ARCH. Econometric Theory, 11(1): 122–150. DOI: https://doi.org/10.1017/S0266466600009063
[58] Engle, R. F., D. M. Lilien, and R. P. Robins. 1987. Estimating time varying risk premia in the term structure: The ARCH-M model. Econometrica, 55(2): 391–407. DOI: https://doi.org/10.2307/1913242
[59] Engle, R. F., V. K. Ng, and M. Rothschild. 1990. Asset pricing with a factor ARCH covariance structure: empirical estimates for treasury bills. Journal of Econometrics, 45: 213–238. DOI: https://doi.org/10.1016/0304-4076(90)90099-F
[60] Engle, R. F., and J. G. Rangel. 2008. The Spline-GARCH Model for Low-Frequency Volatility and Its Global Macroeconomic Causes. Review of Financial Studies, 21: 1187–1222. DOI: http://dx.doi.org/10.2139/ssrn.939447
[61] Engle, R. F., and K. Sheppard. 2001. Theoretical and empirical properties of dynamical conditional correlation model multivariate GARCH, UCSD Discussion.
[62] Epps, T. W. 1979. Comovements in Stock Prices in the Very Short Run. Journal of the American Statistical Association, 74(366): 291–298. DOI: https://doi.org/10.2307/2286325
[63] Fleming, J., C. Kirby, and B. Ostdiek. 2003. The economic value of volatility timing using realized volatility. Journal of Financial Economics, 67(3): 473–509. DOI: https://doi.org/10.1016/S0304-405X(02)00259-3
[64] Ghysels, E., Harvey, A. and Renault, E. 1996. Stochastic volatility in Statistical models in finance, 119–191. Amsterdam: North-Holland.
[65] Ghysels, E., Rubia, A., Valkanov, R. 2009. Multi-Period Forecasts of Volatility: Direct, Iterated, and Mixed-Data Approaches. Working paper.
[66] Ghysels, E., P. Santa-Clara, and R. Valkanov. 2004. The MIDAS touch: Mixed data sampling regression models. Working paper, UNC and UCLA.
[67] Ghysels, E. 2006. Predicting volatility: getting the most out of return data sampled at different frequencies. Journal of Econometrics, 131: 59–95. DOI: https://doi.org/10.1016/j.jeconom.2005.01.004
[68] Giacomini, R., White, H. 2006. Tests of conditional predictive ability. Econometrica, 74(6): 1545–1578. DOI: https://doi.org/10.1111/j.1468-0262.2006.00718.x
[69] Giot, P., and Laurent, S. 2004. Modelling daily Value-at-Risk using realized volatility and ARCH type models. Journal of Empirical Finance, 11(3): 379–398. DOI: https://doi.org/10.1016/j.jempfin.2003.04.003
[70] Glosten, L. R., R. Jagannathan, and D. E. Runkle. 1993. On the Relation Between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. Journal of Finance, 48(5): 1779–1801. DOI: https://doi.org/10.1111/j.1540-6261.1993.tb05128.x
[71] Gonzalo-Rivera, G. 1998. Smooth transition GARCH models. Studies in Nonlinear Dynamics and Econometrics, 3: 61–78.
[72] Gourieroux, C. S., Jasiak, J., Sufana, R. 2009. The Wishart Autoregressive process of multivariate stochastic volatility. Journal of Econometrics, 150(2): 167–181. DOI: https://doi.org/10.1016/j.jeconom.2008.12.016
[73] Hagerud, G. 1997. A New Non-Linear GARCH Model. Ph.D. Thesis, Stockholm School of Economics.
[74] Halbleib-Chiriac, R. 2007. Nonstationary Wishart Autoregressive Model. Working Paper, CoFE, University of Konstanz.
[75] Halbleib-Chiriac, R., AND V. Voev. 2011. Modelling and Forecasting Multivariate Realized Volatility. Journal of Applied Econometrics, 26(6): 922–947. DOI: https://doi.org/10.1002/jae.1152
[76] Hamilton, J. D., and R. Susmel. 1994. Autoregressive conditional heteroskedasticity and changes in regime. Journal of Econometrics, 64: 307–333. DOI: https://doi.org/10.1016/0304-4076(94)90067-1
[77] Hanoch, G., and H. Levy. 1969. The Efficiency Analysis of Choices Involving Risk. The Review of Economic Studies, 36(3): 335–346. DOI: https://doi.org/10.2307/2296431
[78] Hansen, P.R., Huang, Z., Shek, H.H. 2011. Realized GARCH: A Joint Model for Returns and Realized Measures of volatility. Journal of Applied Econometrics, 27(6): 877–906. DOI:https://doi.org/ 10.1002/jae.1234
[79] Hansen, P. R., Lunde, A. 2004. An unbiased measure of realized variance. Unpublished manuscript, Stanford University.
[80] Hansen, P. R., and A. Lunde. 2005. A realized variance for the whole day based on intermittent data. Journal of Financial Econometrics, 3(4): 525–554. DOI: https://doi.org/10.1093/jjfinec/nbi028
[81] Hansen, P. R., and A. Lunde. 2006. Consistent ranking of volatility models. Journal of Econometrics, 131(1-2): 97–121. DOI: https://doi.org/10.1016/j.jeconom.2005.01.005
[82] Hansen, P. R., A. Lunde, and J. M. Nason. 2011. The Model Confidence Set. Econometrica, 79(2): 435–497. DOI: https://doi.org/10.3982/ECTA5771
[83] Hansen, P. R., A. Lunde, and V. Voev. 2014. Realized Beta GARCH: A Multivariate GARCH Model With Realized Measures of Volatility. Journal of Applied Econometrics, 29(5): 774–799. DOI: https://doi.org/10.1002/jae.2389
[84] Harris, L. 1990. Estimation of stock variance and serial covariance from discrete observations. Journal of Financial and Quantitative Analysis, 25(3): 291–306. DOI: https://doi.org/10.2307/2330697
[85] Harris, L. 1991. Stock price clustering and discreteness. Review of Financial Studies, 4(3): 389–415. DOI: https://doi.org/10.1093/rfs/4.3.389
[86] Harvey, A., E. Ruiz, and N. Shephard. 1994. Multivariate stochastic variance models. Review of Economic Studies, 61(2): 247–264. DOI: https://doi.org/10.2307/2297980
[87] Hautsch, N., L. M. Kyj, and P. Malec. 2015. Do High-Frequency Data Improve High Dimensional Portfolio Allocations? Journal of Applied Econometrics, 30(2): 263–290. DOI: https://doi.org/10.1002/jae.2361
[88] Heston, S. L. 1993. A closed form solution for options with stochastic volatility with applications to bond and currency options. The Review of Financial Studies, 6: 327–343. DOI: https://doi.org/10.1093/rfs/6.2.327
[89] Higgins, M. L., and A. K. Bera. 1992. A Class of Nonlinear ARCH Models. International Economic Review, 33(1): 137–158. DOI: https://doi.org/10.2307/2526988
[90] Jacod, J., and P. Protter. 1998. Asymptotic error distributions for the Euler method for stochastic differential equations. Annals of Probability, 26(1): 267–307.
[91] Jagannathan, R., Ma, T. 2003. Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps. The Journal of Finance, 58(4): 1651–1683. DOI: https://doi.org/10.1111/1540-6261.00580
[92] Jin, X., and J. M. Maheu. 2013. Modelling Realized Covariances and Returns. Journal of Financial Econometrics, 11(2): 335–369. DOI: https://doi.org/10.1093/jjfinec/nbs022
[93] Kuester, K., Mittnik, S., Paolella, M.S. 2006. Value-at-risk prediction: a comparison of alternative strategies. Journal of Financial Econometrics, 4(1): 53–89.
[94] Kupiec, P. 1995. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3(2): 73–84. DOI: https://doi.org/10.3905/jod.1995.407942
[95] Kyj, L., Ostdiek, B., Ensor, K. 2009. Realized Covariance Estimation in Dynamic Portfolio Optimization. Working Paper.
[96] Laurent, S., J. V. Rombouts, and F. Violante. 2013. On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models. Journal of Econometrics, 173(1): 1–10. DOI: https://doi.org/10.1016/j.jeconom.2012.08.004
[97] Laurent, S., and F. Violante. 2012. Volatility forecasts evaluation and comparison. Wiley Interdisciplinary Reviews: Computational Statistics, 4(1): 1–12. DOI: https://doi.org/10.1002/wics.190
[98] Lopez, J. A. 1998. Regulatory evaluation of Value-at-Risk models. Journal of Risk, 1(2): 37-64.
[99] Maheu, J. M., McCurdy, T.H. 2002. Nonlinear features of realized volatility. Review of Economics and Statistics, 84(4): 668–681. DOI: https://doi.org/10.1162/003465302760556486
[100] Markowitz, H. 1952. Portfolio selection. Journal of Finance, 7(1): 77–91. DOI: https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[101] Martens, M., M. De Pooter, and D. J. Van Dijk. 2004. Modeling and Forecasting S&P 500 Volatility: Long Memory, Structural Breaks and Nonlinearity. Tinbergen Institute Discussion Paper No. 04-067/4.
[102] McAleer, M., and M. Medeiros. 2008a. A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries. Journal of Econometrics, 147(1): 104–119. DOI: https://doi.org/10.1016/j.jeconom.2008.09.032
[103] McAleer, M., and M. Medeiros. 2008b. Realized Volatility: a Review. Econometric Reviews, 27: 10–45. DOI: https://doi.org/10.1080/07474930701853509
[104] Merton, R. C. 1980. On estimating the expected return on the market: An explanatory investigation. Journal of Financial Economics, 8: 323–361.
[105] Mincer, J. A., and V. Zarnowitz. 1969. The Evaluation of Economic Forecasts in Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, NBER Chapters, 3–46. National Bureau of Economic Research, Inc.
[106] Nelson, D. B. 1990. Stationarity and persistence in the GARCH (1,1) model. Econometric Theory, 6(3): 318–334. DOI: https://doi.org/10.1017/S0266466600005296
[107] Noureldin, D., N. Shephard, and K. Sheppard. 2011. Multivariate high-frequency-based volatility (HEAVY) models. Journal of Applied Econometrics, 27(6): 907–933. DOI: https://doi.org/10.1002/jae.1260
[108] Oomen, R. C. 2001. Using High Frequency Stock Market Index Data to Calculate, Model & Forecast Realized Return Variance. Working paper.
[109] Oomen, R. C. 2005a. Properties of bias-corrected realized variance under alternative sampling schemes. Journal of Financial Econometrics, 3(4): 555–577. DOI: https://doi.org/10.1093/jjfinec/nbi027
[110] Oomen, R. C. 2005b. Properties of realized variance under alternative sampling schemes. Journal of Business and Economic Statistics, 24(2): 219–237. DOI: https://doi.org/10.1198/073500106000000044
[111] Patton, A. J. 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics, 160(1): 246 – 256. DOI: https://doi.org/10.1016/j.jeconom.2010.03.034
[112] Patton, A. J., and K. Sheppard. 2009. Evaluating Volatility and Correlation Forecasts. Handbook of Financial Time Series, 801-838. Springer, Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-540-71297-8_36
[113] Paye, B. S. 2012. Dèjà vol: Predictive regressions for aggregate stock market volatility using macroeconomic variables. Journal of Financial Economics, 106(3): 527–546. DOI: https://doi.org/10.1016/j.jfineco.2012.06.005
[114] Poon, S.H., and C. W. Granger. 2003. Forecasting Volatility in Financial Markets: A Review. Journal of Economic Literature, 41(2): 478–539. DOI: https://doi.org/10.1257/002205103765762743
[115] Poterba, J. M., and L. H. Summers. 1986. The persistence of volatility and stock market fluctuations. The American Economic Review, 76(5): 1142–1151.
[116] Protter, P. E. 1992. Stochastic Integration and Differential Equations: A New Approach. New York: Springer-Verlag.
[117] Richardson, M., Stock, J.H. 1989. Drawing inference from statistics based on multiyear asset returns. Journal of Financial Economics, 25(2): 323–348. DOI: https://doi.org/10.1016/0304-405X(89)90086-X
[118] Ross, S. A. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3): 341–360. DOI: https://doi.org/10.1016/0022-0531(76)90046-6
[119] Schwert, W. G. 1989. Why does stock market volatility change over time? Journal of Finance, 44(5): 1115–1153. DOI: https://doi.org/10.1111/j.1540-6261.1989.tb02647.x
[120] Schwert, W. G. 1990. Indexes of US stock prices from 1802 to 1987. Journal of Business, 63: 399–426.
[121] Sharpe, W. F. 1964. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance, 19(3): 425–442. DOI: https://doi.org/10.2307/2977928
[122] Shephard, N. 1996. Statistical aspects of ARCH and stochastic volatility in Time Series Models in Econometrics, Finance and Other Fields.
[123] Shephard, N., and K. Sheppard. 2010. Realising the future: forecasting with high-frequency-based volatility (HEAVY) models. Journal of Applied Econometrics, 25(2): 197–231. DOI: https://doi.org/10.1002/jae.1158
[124] Shiryaev, A. N. 1999. Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific.
[125] Silvennoinen, A., and T. Teräsvirta. 2008. Multivariate GARCH Models. Working paper.
[126] Sowell, F. 1992. Maximum likelihood estimation of fractionally integrated time series models. Journal of Econometrics, 53: 165–188. DOI: https://doi.org/10.1016/0304-4076(92)90084-5
[127] Taylor, S. J. 1986. Modeling Financial Time Series. John Wiley and Sons.
[128] Taylor, S.J. 1994. Modeling Stochastic Volatility: A Review and Comparative Study. Mathematical Finance, 4(2): 183–204. DOI: https://doi.org/10.1111/j.1467-9965.1994.tb00057.x
[129] Taylor, S. J., X. Xu. 1997. The incremental volatility information in one million foreign exchange quotations. Journal of Empirical Finance, 4(4): 317–340. DOI: https://doi.org/10.1016/S0927-5398(97)00010-8
[130] Theil, H., and J. C. G. Boot. 1962. The final form of econometric equation systems. Review of International Statistical Institute, 30(2): 136–152. DOI: https://doi.org/10.2307/1401895
[131] Van der Weide, R. 2002. GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 17(5): 549–564. DOI: https://doi.org/10.1002/jae.688
[132] von Neumann, J., and O. Morgenstern. 1947. Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 2nd Edition.
[133] West, K. 1996. Asymptotic inference about predictive ability. Econometrica, 64(5): 1067–1084. DOI: https://doi.org/10.2307/2171956
[134] Wold, S. 1976. Spline Functions in Data Analysis. Technometrics, 16(1): 1–11. DOI: https://doi.org/10.2307/1267485
[135] Zakoian, J. M. 1994. Threshold heteroskedastic. Journal of Economics Dynamics and Control, 18(5): 931–955. DOI: https://doi.org/10.1016/0165-1889(94)90039-6
[136] Zellner, A. 1962. An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation Bias. Journal of the American Statistical Association, 57(298): 348–368. DOI: https://doi.org/10.2307/2281644
[137] Zhang, L. 2006. Estimating Covariation: Epps Effect, Microstructure Noise. Working paper.
[138] Zhang, L., Mykland, P.A., Aït−Sahalia, Y. 2005. A tale of two time scales: determining integrated volatility with noisy high frequency data. Journal of the American Statistical Association, 100(472): 1394–1411. DOI: https://doi.org/10.1198/016214505000000169
[139] Zhou, B. 1996. High frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14(1): 45–52. DOI: https://doi.org/10.2307/1392098
The Copyright Transfer Form to ASERS Publishing (The Publisher)
This form refers to the manuscript, which an author(s) was accepted for publication and was signed by all the authors.
The undersigned Author(s) of the above-mentioned Paper here transfer any and all copyright-rights in and to The Paper to The Publisher. The Author(s) warrants that The Paper is based on their original work and that the undersigned has the power and authority to make and execute this assignment. It is the author's responsibility to obtain written permission to quote material that has been previously published in any form. The Publisher recognizes the retained rights noted below and grants to the above authors and employers for whom the work performed royalty-free permission to reuse their materials below. Authors may reuse all or portions of the above Paper in other works, excepting the publication of the paper in the same form. Authors may reproduce or authorize others to reproduce the above Paper for the Author's personal use or for internal company use, provided that the source and The Publisher copyright notice are mentioned, that the copies are not used in any way that implies The Publisher endorsement of a product or service of an employer, and that the copies are not offered for sale as such. Authors are permitted to grant third party requests for reprinting, republishing or other types of reuse. The Authors may make limited distribution of all or portions of the above Paper prior to publication if they inform The Publisher of the nature and extent of such limited distribution prior there to. Authors retain all proprietary rights in any process, procedure, or article of manufacture described in The Paper. This agreement becomes null and void if and only if the above paper is not accepted and published by The Publisher, or is with drawn by the author(s) before acceptance by the Publisher.