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Abstract: 

Real data from continuous quantities, considered under different models in economic theory, cannot be 
measured precisely. As a result, measurement results cannot be accurately represented by real numbers, as they 
contain different kinds of uncertainty. Beside errors and variability, individual measurement results are more or 
less fuzzy as well. Therefore, real data have to be described mathematically in an adequate way. The best up-to-
date models for this are so-called fuzzy numbers, which are special fuzzy subsets of the set of real numbers. 
Based on this description, statistical analysis methods must be generalized to the situation of fuzzy data. This is 
possible and will be explained here for descriptive statistics, inferential statistics, objective statistics, and 
Bayesian inference. 

Keywords: Bayesian analysis; descriptive statistics; fuzzy information; fuzzy numbers; statistical inference 

JEL Classification: C11; C13; C15 

1. Introduction 

Measurement results of continuous variables are often clouded with uncertainty. In addition, many data 
are not exact numbers but more or less fuzzy. This type of uncertainty differs from measurement errors. In fact, 
the obtained data are generally associated with various types of uncertainty. There are multiple components to 
uncertainty in economic analyses, and it is a challenge for researchers to characterize the full nature and 
magnitude of these components (Hansen 2017). This challenge should be approached with caution for an 
accurate data analysis. Data with uncertainty (fuzzy data) are common in economic analysis, i.e. economic 
indicators such as measures of trade, labor force, and stock market. In these cases, the data to be reviewed 
and/or further analyzed are often presented with considerable uncertainties. Nevertheless, such data, despite 
their uncertainties, are essential for decisions and often critical. Different methods have been developed for 
analyzing or correcting results from the use of incomplete data (Krasker 1983). The description of fuzzy data and 
their statistical analysis also form an active field of research. The most up-to-date mathematical model to describe 
the fuzziness is fuzzy numbers and their characterizing functions (Viertl 2015).   

In this contribution, the generalized statistical methods to handle fuzzy data, common in economic 
analysis, are described. In section 2, definition of fuzzy data, fuzzy probability densities, and fuzzy-valued 
functions are explained. Definition of fuzzy sample and some of generalized methods for measures of location 
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(central tendency) as well as dispersion are described in section 3. Some additional useful descriptive statistics 
for fuzzy data are explained in section 4. In section 5, inferential statistics based on fuzzy information are 
described. In section 6, the generalized method for Bayesian Inference with fuzzy data is presented. An open-end 
and critical research area, i.e. fuzzy stochastic processes, is suggested in section 7. The contribution is 
concluded with final remarks in section 8.   

2. Fuzziness 

Many important economic information is not obtained as precise data, but rather imprecise, e.g. high 
income, low interest rate, good quality, and many more.  A modern quantitative description of such linguistic 
variables is fuzzy sets. Hence, the occurring uncertainty can be modelled using the theory of fuzzy random 

functions (Möller 2009). A fuzzy subset of a given set M is a generalization of the indicator function  of a 

classical subset .  These generalized functions are called membership functions (), which are functions 

:   [0,1]. The value ( ) for    is the degree to which  belongs to the fuzzy set defined by (). 

Remark 2.1 Indicator functions are special forms of membership functions obeying   {0,1}, i.e. 

they allow only two possible values of 0 and 1. 
General membership functions can assume all values from the closed unit interval [0,1], however. Fuzzy 

subsets of a universal set  are determined by a family of classical subsets of , i.e. the so-called -cuts. 

Definition 2.1 Let () be the membership function of a fuzzy subset of the universal set . For all 

(0,1], the -cut C

[ ()] is defined by C


[ ()] ≔ {    ( ) ≥ }. 

Now the following representation lemma is valid (Viertl 2011). 

Lemma 2.1 For every membership function (), the following holds true: 

( ) = {. C[()] ( ): [0,1]}  x  

Proof: For fixed  and [0,1], we have 

 C[()] ( ) =  . 

Therefore, we obtain for every [0,1], C[ ()] ( ) , and further, 

 . On the other hand, we have for : 

0 C0
[()] ( ) = 0  and, therefore, ,  

which implies . 

Remark 2.2: Fuzzy sets are determined by the family of their -cuts . The family of -

cuts is a nested family of subsets of , i.e. .  The question is whether every nested 

family of subsets of  are the -cuts of a fuzzy set in . There are counterexamples, but the following 

construction lemma holds: 

Lemma 2.2 Let  be a nested family of subsets of a given set . Then, a fuzzy subset of 

 is generated, whose membership function is defined by 

(x) = sup{ A
( ): [0,1]}   x , 

for which the following holds true: 

 

Proof: First we extend the family  by the element . Then, the proof is in the 

following three steps: 

(1) : 
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For   , we have ∙ A
(x) =  and, thus,  By definition of (), we 

have ( ) ≥  and, therefore,   C

[()]. 

(2)   C

[()] = : 

For   , from , we know there exists <  with   , and by the nested 

structure of the generating family , we know that x  . Therefore, 

  and therefore x  C

[()]. 

(3)  

 holds by the nested structure of . For x  C

[()], assuming 

, we obtain . Choosing , we 

have  and, therefore .  

Remark 2.3 For a given nested family of subsets of , the generated fuzzy subset contains -cuts which 

are equal to the generating sets as far as possible. See also (Zadeh 1965 and Dubois 1987) for related 
mathematical definitions. 

2.1. Fuzzy Data 

Measurement data from continuous quantities are always more or less imprecise, i.e. they cannot be 
represented by precise numbers. Therefore, a more general concept than real numbers is necessary. The best 
up-to-date such models are so-called fuzzy numbers. 

Definition 2.2 A fuzzy number x* is a fuzzy subset of the set of real numbers ℝ, whose membership 

function () obeys the following: 

(1) supp[()] is a bounded set, i.e. supp[()] ⊆ [a,b] with - < a < b < . 

(2) C[()] is a finite union of compact intervals, i.e. 

C[()] = ]     for all (0,1]. 

Membership functions obeying the conditions (1) and (2) are called characterizing functions. If all -cuts of 
a fuzzy number are compact intervals, the corresponding fuzzy number is called fuzzy interval. 

Remark 2.4 Methods for obtaining the characterizing function of fuzzy measurement data can be found in 
(Klir 1995, Viertl 2011 and Kovarova 2015). 

For multivariate data and their statistical inference, the following concept of fuzzy vectors is necessary: 

Definition 2.3 A fuzzy subset x* of the Euclidean space ℝ
n is called n-dimensional fuzzy vector if the 

membership function (· ) of x* fulfils the following: 

(1) supp[(·)] is a bounded set, i.e. it is contained in an n-dimensional interval  of finite 

volume. 

(2) C[()] is non-empty for all (0,1], and it is a finite union of simply connected and closed subsets of 

ℝ
n
. 

Remark 2.5 A vector ( ) of fuzzy numbers is not a fuzzy vector. In this case, it is necessary to 

combine the fuzzy numbers  to obtain a fuzzy element ( )* of the sample space  

and, then, the following holds: 

Lemma 2.3 Let  be fuzzy numbers with corresponding characterizing functions 1(),…,n().  

Then the function (· ,…, ·), defined by ( ) =     ( ) ℝ
n
, 

is the vector-characterizing function of an n-dimensional fuzzy vector ( )*. 

Proof: By the validity of C[ (· ,…, ·)] = , the -cut C[ (· ,…, ·)]      (0,1].  

Moreover, this -cut is a finite union of Cartesian products of compact intervals and the supp[(· ,…, ·)] is 

contained in , as a result, the proof is concluded.  Finally, if all -cuts of an n-dimensional fuzzy 

vector are simply connected, then the fuzzy vector is called n-dimensional fuzzy interval. 
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2.2. Fuzzy Probability Densities 

Prior information in Bayesian inference is usually assumed in form of probability distributions on the 

parameter space ⊝ of stochastic models X ~ f (·| ); ⊝. In case of fuzzy data, it turns out that a more general 
concept of probability is necessary. This leads to so-called fuzzy probability densities. 

Definition 2.4 Let (M, ℬ, µ) be a measure space and  be a function which assigns to 

  M a fuzzy interval f *(x) for all M, such that the so-called -level functions () and  (), defined by 

C[ f *( )] = [  ( ),  ( )]  M, (0,1], are integrable functions, and there exists some classical 

probability density ( )  g ( )  ( )      , then  is called fuzzy probability 

density. 
Based on fuzzy probability densities, a generalized concept of probability for event B in ℬ can be defined, 

i.e. these generalized probabilities are fuzzy intervals P*(B), whose generating families are defined in the following 
way: 

Definition 2.5 Based on a fuzzy probability density , for (0,1], the system of classical probability 

densities g obeying  ( )  g ( )  ( )      M is denoted by 𝒟. Then for an event B, the fuzzy probability 

P*(B) has generating family of intervals, ([a , b]; (0,1]), given by 

a  ≔ inf { g 𝒟 } and b  ≔ sup{ g 𝒟}. 

The characterizing function of the fuzzy interval P*(B) is given by the construction Lemma 2.2. 
Remark 2.6 Fuzzy probability densities are basic for Bayesian inference with fuzzy data (Viertl and 

Sunanta 2013). 

2.3. Integration of Fuzzy-valued Functions 

Let (M, ℬ, µ) be a measure space and  a fuzzy valued function, where all values f *(x) are fuzzy 

intervals, and all -level functions be µ-integrable with finite integral.  Then, it is possible to integrate  and this 

integral is a fuzzy interval, defined in the following way: 

Definition 2.6 The fuzzy valued integral  is the fuzzy interval, which has generating family 

(A; (0,1]) where A = [ , ], given by  and .  The characterizing function 

() of  is given by  ( ) = sup{.  ( ): [0,1]}      ℝ. 

Remark 2.7 The integration of fuzzy valued functions is basic for the generalization of predictive 
distributions in Bayesian inference. 

3. Fuzzy Samples and Foundations of Statistical Inference 

Samples of continuous stochastic quantities X consist of a finite sequence of fuzzy numbers.  In order to 

generalize statistical methods for fuzzy data, functions of data are important. Let  be the observation space of 

X, i.e. the set of possible values for X. Then the sample space for standard samples is the Cartesian product of n 

copies of the observation space , i.e. the sample space is .  Classical statistical functions are mappings 

from the sample space to some measurable space ( , 𝒜). For a classical statistical function , in 

case of fuzzy sample , the generalized value f ( ) has to be defined in a reasonable way.  

This is possible by application of the so-called extension principle (see also Zadeh 1975) from the theory of fuzzy 
sets. 

Definition 3.1 (Extension principle) Let  be any function, and  a fuzzy subset of  with 

membership function ().  Then, the generalized value  is the fuzzy subset of N whose membership 

function () is defined in the following way: 

  𝜂(y) =       

Remark 3.1 For , () need not be a characterizing function.  However, for continuous functions f, 

the following theorem holds: 
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Theorem 3.1 Let  be a continuous function and x* be an n-dimensional fuzzy vector. Then, 

the generalized value , obtained by application of the extension principle, is a fuzzy number. A detailed 

proof can be found in (Viertl 2011). 
Remark 3.2 In order to apply the extension principle to functions of fuzzy samples, first, the vector of fuzzy 

data has to be combined into a fuzzy vector. This is done by the application of Lemma 2.3, i.e. the fuzzy sample 

with corresponding characterizing function  is combined into a fuzzy vector x* whose vector-

characterizing function (· ,…, ·) has values 

( ) =     ( ,…, ) ℝ
n
. 

Based on this combined fuzzy sample x*, statistical functions  can be generalized by 

application of the extension principle.  The fuzzy value  is defined by , i.e. the membership 

function () of  is given by its values 

𝜂(y) =       

Example 3.1 For the sample mean  in case of n fuzzy numbers 

, the fuzzy value  is also a fuzzy number by Theorem 3.1. Moreover, the 

generalized sample dispersion s* is a fuzzy number. In figure 3.1, the characterizing functions of a fuzzy sample 
are depicted. In figure 3.2, the characterizing function of the corresponding fuzzy sample mean is given, along 
with the characterizing function of the fuzzy sample dispersion in figure 3.3 respectively. 

 
Figure 3.1. Fuzzy sample 

 
Figure 3.2. Fuzzy sample mean 
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Figure 3.3. Fuzzy sample dispersion 

 

4. Descriptive Statistics for Fuzzy Data 

For fuzzy data, descriptive statistics has to be generalized. Mean values and empirical variances of fuzzy 
data are already introduced in Example 3.1. 

4.1  Maxima and minima of fuzzy data 

For fuzzy data  with characterizing functions  and -cuts C[()] =  

], the fuzzy numbers  and  are defined by application of the extension principle for 

the functions  and  to the fuzzy combined sample x* (see also remark 3.2). 

Definition 4.1 Let  be n fuzzy numbers of the observation space with corresponding 

characterizing functions 1(),…,n(). To obtain a fuzzy vector x*, the fuzzy numbers  have to be 

combined.  Through construction of an n-dimensional vector-characterizing function (· ,…, ·) via a triangular 

norm (t-norm T ) , the combined fuzzy sample  forms a fuzzy element ( )* of the sample space , 

i.e.  combined fuzzy sample and vector-characterizing function (· ,…, ·) 

where ( ) ≔ [ ( ),…, ( )]   ( )  ℝ
n 

and the combination , which is the n-

dimensional extension of the t-norm T by its associativity, i.e. 

 . 

For statistical and algebraic calculations with fuzzy data, the minimum t-norm T  is optimal (Viertl 2011), 

i.e. ( ) =    =      ( ) ℝ
n
. 

Lemma 4.1 A fuzzy vector  is obtained via minimum t-norm when the individual values of the variables xi 

are fuzzy numbers .  Through the minimum-t-norm, the combination of n fuzzy numbers with characterizing 

functions i(·), , a fuzzy vector  = ( )* is obtained. In this case, the following holds: 

C[ (· ,…, ·)] =     (0,1] 

In words, the -cuts of the fuzzy vector  = ( )* are the Cartesian products of the -cuts of the 

fuzzy numbers , i =1(1) n. 

Proof:  C[ (· ,…, ·)]   =  { x ℝ
n
 (x) ≥ } 

    =  { x   {1( ),..., n( )} ≥ } 

    =   

    =   

The concepts of combined fuzzy samples and triangular norms are useful for succinct multivariate 
statistical analysis of fuzzy data. 
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4.2 Histograms for fuzzy data 
 

For a given partition of the observation space and fuzzy data in some cases, it is not possible to decide to 
which class a fuzzy observation belongs.  This makes it necessary to generalize the concept of histograms. A first 

step is to construct lower and upper values of the frequencies  of class , j = 1(1)k. 

Let  be fuzzy data with corresponding characterizing functions 1(),…,n(). Then, based on 

supp[
i
()], the lower value ( ) is determined by  

 

And the upper value  is defined by 

 
where # indicates cardinality.  Consequently, an interval valued histogram is obtained, whose frequencies 

are the intervals  for j = 1(1)k. 

Remark 4.1 For two disjoint classes  and , the lower values of the frequencies are super-additive, 

i.e.  while the upper values are sub-additive, i.e. 

 
This is, in fact, easily seen for  by  

 

and for  by 

 
In Figure 4.1, an example of an interval-valued histogram is depicted. 
 

 
Figure 4.1. Interval-valued Histogram 

 
Remark 4.2 Similar to the conditions for classical relative frequencies, whose abstraction leads to the 

axioms of probability distributions, the conditions of interval-valued frequencies are abstracted as axioms for so-
called interval probabilities. 

A more informative generalization of histograms is obtained when the considerations above are made for 

each -level. Then the results are fuzzy numbers  as fuzzy frequencies. The construction is the following: 

For each (0,1], the generating family of intervals for the characterizing function of the fuzzy frequency 

 is , where  and 

. 

By application of the construction lemma 2.2, the characterizing function of  is obtained. 
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Remark 4.3 The characterizing functions of fuzzy relative frequencies are step functions. Moreover, fuzzy 
histograms are examples of fuzzy valued functions: 

 

Similar to the interval-valued relative frequencies, i.e. for the generating values , 

the following holds:  For ,  

 

 
Figure 4.2 displayed the axonometric picture of a fuzzy histogram (Viertl 2011). 
 

 
Figure 4.2. Fuzzy Histogram 

 

4.3 Empirical distribution functions for fuzzy data 

In order to generalize the empirical distribution function  to the situation of fuzzy data  

with characterizing functions , the following construction, using -cuts is useful which yields a 

fuzzy valued function :  For fixed  and , we define 

 

 
The generating system of intervals for the fuzzy value  is 

 The characterizing function of  is obtained through lemma 

2.2. 

For variable , two functions  are obtained, which in turn determine the  

for variable . Based on , empirical fractiles for the fuzzy empirical distribution can be defined. 

 

 
Figure 4.3. -Cut of  
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For  (0,1), the lower and upper -level curves  are used to define the generating 

family of intervals (  for the fuzzy interval , which is the empirical fractile of : 

 

where  are defined by 

  and  . 

The characterizing function of the fuzzy fractile  is obtained from the construction lemma 2.2. An 

example for the definition of  is given in Figure 3.4.  

 

 
Figure 4.4. The definition of  for  

 

4.4 Fuzzy empirical correlation 

In case of fuzzy 2-dimensional data given as 2-dimensional fuzzy vector , i = 1(1)n with vector-

characterizing functions 
i
(·,·), the classical correlation coefficient can be generalized by application of the 

extension principle (Definition 3.1). First, the fuzzy vectors have to be combined into a fuzzy vector in the sample 

space  by application of the minimum-t-norm, i.e. the vector-characterizing function (·,…,·) of the fuzzy 

combined sample is given by its values 

( , … , ) ≔    ( , … , )  . 

Now the extension principle is applied to the function 

 

and the characterizing function  of the generalized (fuzzy) empirical correlation coefficient  is 

given by its values 

 r  ℝ. 

Remark 4.4 The support of  is a subset of the interval [-1,1]. 

In figure 4.5, a fuzzy sample and the corresponding generalized empirical correlation coefficient is 

given. 
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Figure 4.5. Fuzzy 2-dimensional data and its empirical correlation coefficient  

 

Remark 4.5 The definition of  allows different types of data. These data can be in form of fuzzy 

components  and . 

5. Objectivist Statistical Inference for Fuzzy Data 

In objectivist statistics, it is assumed that a true underlying distribution exists which has to be estimated or 

tested. For parametric stochastic model , , the existence of a true value  of the parameter 

is assured, as a result, this  has to be estimated as good as possible. 

5.1 Generalized Point Estimators 

This is the generalization of so-called point estimators from standard statistics. For a stochastic quantity X 

with observation space MX a certain characteristic value should be an element of , where ( ) is a 

measurable space. Let  be a standard point estimator, which is a measurable function from the 

sample space  to the space of possible values of the characteristic value. This estimator is generalized by 

application of the extension principle in the following way:  

Let  with  be a fuzzy sample; first the vector-characterizing function (· ,…, ·) of the 

combined fuzzy sample  is determined by its values 

( ) :=     ( ) ℝ
n
. 

Then, the membership function of the fuzzy estimate ( )  is given by 

𝜂(s) = . 
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Remark 5.1 If the parameter of a parametric stochastic model  has to be estimated, a 

generalized estimator  is a fuzzy element of the parameter space . 

Example 5.1 Let X be a stochastic quantity whose expectation 𝔼(X) exits. Then, for the fuzzy sample 
given in Figure 5.1, the fuzzy estimate for this sample is the generalization of the standard estimator 

. The characterizing function of the fuzzy estimate   is depicted in Figure 5.2. 

 
Figure 5.1. Characterizing functions of a fuzzy sample 

 

 
Figure 5.2. Characterizing function of the fuzzy sample mean 

5.2 Generalized Confidence Sets 

For a given parametric stochastic model ,  and a standard confidence function 

, where  denotes the power set of the parameter space ⊝, in case of fuzzy sample 

, the concept of confidence set has to be generalized. This is possible in the following way: 

Based on the combined fuzzy sample , with vector-characterizing function (· ,…, ·), the membership 

function 𝜑(·) of the generalized (fuzzy) confidence set  is defined by 

(𝜃) = , where x = ( ) 

. 

For the membership function (·), the following holds true: 

 

which can be proven by observing . Assuming , then  
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5.3 Statistical Tests based on Fuzzy Data 

Classical test statistics  based on standard samples  are measurable 

functions from the sample space  to a suitable measurable space ( ) which is partitioned into an 

acceptance region A and its complement N \ A, i.e. the rejection region. 

For fuzzy samples , the value  becomes fuzzy, and therefore it can be 

ambiguous to which region the value  belongs.  Therefore, statistical tests have to be adapted accordingly. 

A first solution would be to take observations until the support of  is a subset of A or Ac. Another method 

is to determine a p-value based on the fuzzy value , where this p-value is defined as the probability of an error 

of the first type (rejecting a true hypothesis) for which the support of  is only contained in the rejection region Ac 

of the corresponding classical standard test. 
Remark 5.2 For fuzzy samples, a more natural approach is the generalization of p-values in form of fuzzy 

numbers, as explained here: 

Let  be the characterizing function of the fuzzy value  of the generalized test statistic 

 Considering the -cuts of , C[ ] = , the fuzzy p-value  for a 

given standard test is defined in the following way: 

For one-sided tests with test statistic  and decision rule “rejection for   tcritical”, the generating family of 

intervals for the fuzzy p-value p* is defined by 

A  . 

For one-sided tests with decision rule “rejection for   tcritical”, the generating family  for 

p* is defined by 

A  . 

In case of two-sided tests, i.e. acceptance for , and fuzzy value  of the test statistic , 

first, it has to be decided on which side, of the median m of the distribution of , the main part of fuzziness of  

is located. Therefore, the areas under the characterizing function  of  have to be computed, which are on 

both sides of the median m. Denoting these areas by F1 and F2 respectively, the generating family 

 for the fuzzy p-value p* are defined by 

. 

The -cuts of p* are denoted by , and can be interpreted in terms of generalized 

probabilities, and can be compared with the significance level  of the test. The decision is made according to a 
three-decision testing problem: 

If, for all  and ,  

 reject ℋ
0 and accept ℋ

1
 

 accept ℋ
0 and reject ℋ

1
 

: both ℋ
0 and ℋ

1 
are neither accepted nor rejected. 

In the third case, the uncertainty of making a decision is expressed by the characterizing function () of p*. 

The case that  for all  implies , i.e. we have a two-decision 

problem similar to tests based on precise data (Filzmoser 2004). 

Example 5.2 Let the test statistic  have a standard normal distribution with density f () and the 

characterizing function  of (0.2,0.7,1.2) is of symmetric triangular shape as shown in Figure 4.3a. The 

following one-sided statistical hypotheses are to be tested at the significance level  = 0.05, 

ℋ
0
:    

0
 vs. ℋ

1
:   > 

0 
;  is an unknown parameter and 

0 
= 0 in this example, i.e. ℋ

0
:    0 vs. 

ℋ
1
:   > 0. The -cuts of the fuzzy p-value p* as defined above are to be determined for decision. 

In Figure 4.3a, the -cut of , C[ ] = , for  = 0.5 is derived as 

 accordingly. The p-values corresponding to  are 
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0.33 and 0.17 respectively as shown in shaded areas in Figure 4.3a and the construction of their characterizing 

function in Figure 4.3b. Finally, the resulting fuzzy p-value is compared to the significance level  = 0.05 and ℋ
0 

conclude that is not rejected. 
 

 
Figure 4.3: Construction of the Characterizing Function of the Fuzzy p-value 

 

6. Bayesian Inference and Fuzzy Information 

Bayesian inference uses a-priori information of specific parameters in stochastic models. In other words, 

Bayes’ theorem formulates the transition from the a-priori distribution  of the stochastic quantity, describing 

parameters of interest, to the so-called a-posteriori distribution  based on data D. In case of continuous 

stochastic models X ~ f (·| ); ⊝, based on observations  of X, the transition from an a-priori 

density to an updated information with the distribution of the stochastic quantity describing the parameter   is 

given by the conditional density 𝜋(· | ) of , i.e. Bayes’ theorem 

or   , 

where  is the likelihood function defined on the parameter space ⊝. 

In standard Bayesian inference, it is assumed here that  is a standard (classical) probability density, 

and the data are given as numbers or vectors.  
For a more realistic Bayesian statistical inference, the inevitable uncertainties (including fuzziness) have to 

be addressed, i.e. the fuzziness of continuous quantities and of the a-priori knowledge, however. As explained in 
Section 2, this fuzziness can be defined in form of fuzzy numbers or vectors and modelled by the so-called fuzzy 
probability densities, respectively. Finally, Bayes’ theorem can be generalized to handle the situation of fuzzy a-
priori density and fuzzy data. 

6.1 Fuzzy a-priori densities 

Based on fuzzy probability densities (Section 2.2), generalized fuzzy probabilities of events A 𝒜, P*(A) 

are fuzzy intervals. The characterizing function () of P*(A) is given by the generation lemma (Viertl 2011), i.e. 

(y) = sup{. [a , b](x): (0,1]} for all yℝ, where B() denotes the indicator function of the set B, and  

[a0 ,b0] ≔ℝ. 

Definition 6.1: A fuzzy a-priori density on the parameter space ⊝ is a fuzzy density defined on ⊝. 

6.2 Generalized likelihood function 

The likelihood function  in Bayes’ theorem can be generalized for fuzzy data  

through the extension principle and based on the combined fuzzy sample  and its vector-characterizing function 

(·,…,·). The characterizing function  of the fuzzy value  is, then, given by its values as 

. 
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Based on the generalized likelihood function, Bayes’ theorem is generalized for fuzzy a-priori densities 

π*() on the parameter space ⊝ and fuzzy data.  

6.3  Generalized Bayes’ theorem for fuzzy data 

The following description of Bayes’ theorem is generalized for the continuous case. However, for discrete 

variables, Bayes’ formula can also be generalized similarly (Sunanta 2016). Let X ~ f (| ); ⊝ be a 

continuous stochastic model with continuous parameter space ⊝ ⊆ ℝk, and �*() a fuzzy a-priori density on the 

parameter space ⊝. The sequential updating from standard Bayes’ theorem is generalized as following: 

Given a fuzzy a-priori density π*() and fuzzy sample , the generalized a-posteriori density π*(  

| ) is then calculated, from which the result is the same as if the sample were separated in two parts 

 and , i.e. the a-posteriori density of the first partition π*(  | ) is obtained. 

Then, this a-posteriori density is taken as new a-priori density, based on which the a-posteriori density  

π*(  | ) is finally calculated. 

The generalized fuzzy Bayes’ theorem is based on -level functions of the fuzzy a-priori density and of the 

generalized likelihood function, as well as the vector-characterizing function of the combined fuzzy sample .   

Using the above notation, the -level functions of the fuzzy a-posteriori density π*(  | ), with 

combined fuzzy sample , obtained by minimum-combination rule, are defined in the following way: 

  

and        ⊝   

  

The averaging in the integral is necessary to keep the sequential updating condition (Viertl 2011). 

6.4 Fuzzy predictive distribution 

In Bayesian inference, the predictive density based on the a-posteriori density (·| ) is defined to be the 

marginal density of X from (X, ) denoted by p(·| ), whose values are given by 

.    

The generalization for fuzzy a-posteriori densities π*( | ) is obtained through a construction similar to 

the calculation of probabilities based on fuzzy densities (section 2.2). 

Defining a continuous stochastic model X ~ f (| ); ⊝ and the fuzzy a-posteriori density π*( | ), the 

generalized integral  is a fuzzy interval p*(x| ) whose characterizing 

function is generated by the following family (A

; (0,1]) of intervals A


:  

For all (0,1], let  and  be the -level functions of the fuzzy a-posteriori density 

𝜋* , and 
 the set of all classical probability densities g () on ⊝, where   g ( )    

⊝. 

The interval A

 = [c

 , d ], (0,1] is defined by 

 c ≔ inf { : g

} and d ≔ { : g


}. The system of intervals [c


,d


], 

(0,1], is nested by the validity of 
 
 . 

The characterizing function of p*(x| ) is given by the generation lemma from Section 6.1, i.e. 

x (y) = {. [c , d ](y): [0,1]}  yℝ, where [c0 , d0] ≔ℝ. 

The fuzzy predictive density is, then, the family of p*(x| ), . 
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7 Fuzzy Stochastic Processes 

Stochastic processes are families of stochastic quantities  where  is an appropriate index set, 

frequently  is a time interval, i.e.   ℝ. The occurring of uncertainty can be modelled using the theory of fuzzy 

random processes, which is derived from the theory of fuzzy random functions (Möller 2009). By the imprecision 
of data from continuous quantities, the observations (trajectories) of the process are fuzzy. Therefore, the sample 

paths are fuzzy valued functions.  For the so-called fuzzy stochastic process , different mathematical 

models exist, i.e.  can be modelled as fuzzy random variables.   

A special case would be time series, in which case the uncertainty of the individual observed value is 

modeled as a fuzzy variable .  A time series of fuzzy data may be viewed as a random 

realization of a fuzzy stochastic process, of which the generalized model is necessary for further forecasting 
(Möller and Reuter 2007). However, for fuzzy stochastic processes with continuous time, many challenging 
research topics are still open, e.g. the first hitting times, predictions, an analogue of convergence theorems. 

Conclusions 

For observations and measurements of continuous quantities, fuzziness is unavoidable. Therefore, 
suitable mathematical models are necessary to describe real data.  This is possible and many research topics 
related to this are still waiting to be solved. The fuzziness of individual measurement results can be described by 
so-called fuzzy numbers, whereas the variability and errors are described by stochastic models. 

In this contribution, some generalized statistical methods for fuzzy data, i.e. descriptive statistics, statistical 
inference, and Bayesian inference are described. Descriptive statistics provide simple summaries of the collected 
samples and measures (data). They form the basis of virtually every quantitative analysis of the data. Through 
concepts of fuzzy numbers and characterising functions, fuzzy data are summarised and represented in form of 
fuzzy histograms. Some other statistics, such as fuzzy empirical distribution functions and correlation coefficients, 
are also useful for preliminary data analysis. For realistic projection of the behaviours of the variables under 
analysis, models for prediction based on fuzzy information, through Bayesian inference and fuzzy predictive 
density, are introduced.  

Fuzziness is everywhere in the physical world, including in economics arena. In order to describe different 
facets of reality, the analysis methods have to capture this type of uncertainty. The related methods are available 
through mathematical models for fuzzy data. Accordingly, application of such methods results in more realistic 
models for data analysis and, subsequently, better understanding of the collected data for further use of such 
information. 
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