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GAME COMPLETE ANALYSIS OF BERTRAND DUOPOLY 
 

David CARFÌ, 
University of Messina, Faculty of Economics, Department DESMAS, Italy  

davidcarfi71@yahoo.it 
Emanuele PERRONE 

Faculty of Economics, Italy 
e_perrone@alice.it  

 
Abstract: 

In this paper we apply the Complete Analysis of Differentiable Games [introduced by D. Carfì in (Carfi 2010), (Carfi 
2009), (Carfi 2009), and (Carfi 2009)] and already employed by himself and others in (Carfi 2011), (Carfi 2010), (Carfi 2009)] 
to the classic Bertrand Duopoly (1883), classic oligopolistic market in which there are two enterprises producing the same 
commodity and selling it in the same market. In this classic model, in a competitive background, the two enterprises employ 
as possible strategies the unit prices of their product, contrary to the Cournot duopoly, in which the enterprises decide to use 
the quantities of the commodity produced as strategies. The main solutions proposed in literature for this kind of duopoly (as 
in the case of Cournot duopoly) are the Nash equilibrium and the Collusive Optimum, without any subsequent critical exam 
about these two kinds of solutions. The absence of any critical quantitative analysis is due to the relevant lack of knowledge 
regarding the set of all possible outcomes of this strategic interaction. On the contrary, by considering the Bertrand Duopoly 
as a differentiable game (games with differentiable payoff functions) and studying it by the new topological methodologies 
introduced by D. Carfì, we obtain an exhaustive and complete vision of the entire payoff space of the Bertrand game (this 
also in asymmetric cases with the help of computers) and this total view allows us to analyze critically the classic solutions 
and to find other ways of action to select Pareto strategies. In order to illustrate the application of this topological 
methodology to the considered infinite game, several compromise pricing-decisions are considered, and we show how the 
complete study gives a real extremely extended comprehension of the classic model. 

 
Keywords: Duopoly, Normal form Games, Microeconomic Policy, Complete study, Bargaining solutions. 
 
JEL Classification: D7, C71, C72, C78 

 

1. Introduction 
We consider a duopoly (1, 2) with production fixed cost f and production variable cost a function v of the 

produced quantity, for both the producers; we shall assume the function v equal 0.  
The demand for enterprise 1 is the affine reaction function Q1, from the Euclidean plane of price bi-

strategies R2 into the real line of quantities to be produced R – the demand Q1 (p) is the aggregate reaction of 
consumers in the market to the pair p of prices imposed by the two enterprises (see for a general theory of 
reactions (Carfi, and Ricciardello 2009), (Carfi 2009), (Carfi 2009), (Carfi, and Ricciardello 2011) - defined by 

 

Q1(p) = b + a1p1 + a2p2 , (1.1) 
 

that is by the equality 
 

Q1(p) = b + (a|p), (1.2) 
 

for every pair of prices p, where a is a pair of real numbers whose first component is negative and whose 
second component is positive, where b is a non-negative real and where (a|p) is the standard Euclidean scalar 
product of the two vectors a and p. 

The components of the pair p are determined by the two enterprises 1 and 2, respectively.  
The demand for the enterprise 2 is the function Q2 defined, in a perfectly analogous way as the first one, 

by 
 

Q2(p) = b + a1p2 + a2p1, that is (1.3)  
 

Q2(p) = b + (a-|p), (1.4) 
 

for every pair of prices p, where a-  is the symmetric pair of a. 

mailto:davidcarfi71@yahoo.it
mailto:e_perrone@alice.it
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The classic way to solve the duopoly (see for instance: Davide Vannoni, and Massimiliano Piacenza, 
University of Torino, Faculty of Economics, Appunti di Microeconomia - Corso C - Lezione 10, A. A. 2009/2010) is 
to determine the curves of best price reaction, for example, for enterprise 1, we consider the profit function P1 
defined by 

 

P1 (p1,q1) = p1q1 – f  (1.5) 
 

that, on the reaction demand function Q1, assumes the form  
 

g1(p) = P1 (p1 ,Q1 (p)) = p1(b + a1p1 + a2p2) – f, (1.6) 
 

for every price p2, fixed by the enterprise 2, the price of maximum profit for enterprise 1 must satisfy the 
following stationary condition  

 

D1(g1)(p) = b + 2a1p1 + a2p2 = 0. (1.7) 
 

We note that the second derivative of the function g1( . ,p2) is negative ( 2a1 < 0), hence the above 
stationary condition is not only necessary but also sufficient in order to obtain maxima, we so determine the 
classic reaction curve of enterprise 1, the line of equation 

 

p1 = b/(2a1) + p2a2/(2a1). (1.8) 
 

Symmetrically, the reaction curve of enterprise 2 is the line 
 

p2 = b/(2a1) + p1a2/(2a1). (1.9) 
 

Now, by the intersection of the two reaction curves, we obtain the fixed-point equation 
 

p1 = b/(2a1) + (b/(2a1) + p1a2/(2a1))a2/(2a1), (1.10) 
 

and so finally we obtain the equilibrium price of the enterprise 1, and the same of enterprise 2: 
 

p2 = p1 = - b/(2a1 + a2). (1.11) 
 

Another classic solution is the symmetric collusive point C = (c,c) determined by maximization of the 
function H defined by 

 

H(c) = P1 (c ,Q1 (c,c)) + P2 (c ,Q2 (c,c)) = 2c(b + (a1 + a2)c) – 2f, (1.12) 
 

for every c. 
But also in this case, an accurate analysis of this point is impossible since we do not know the geometry of 

the payoff space. 
 

2. Formal description of Bertrand’s normal form game 
It will be a non-linear two-players gain game (f, >) (see also (6, Carfì 2009), (8, Carfì 2009), and (9, Carfì 

2009). The two players/enterprises shall be called Emil and Frances (following Aubin’s books (Aubin 1982) and 
(Aubin 1998). 

Assumption 1 (strategy sets). The two players produce and offer the same commodity at the following 
prices: 𝓍 ∊ ℝ≥ for Emil and 𝓎 ∊ ℝ≥ for Frances. In more precise terms: the payoff function f of the game is 

defined on a subset of the positive cone of the Cartesian plane ℝ2, interpreted as a space of bi-prices. We 
assume (by simplicity) that the set of all strategies (of each player) is the interval E = [0, +∞]. 

Assumption 2 (symmetry of the game). The game will be assumed symmetric with respect to the players. 
In other terms, the payoff pair f(x,y) is the symmetric of the pair f(y,x). 

Assumption 3 (form of demand functions). Let the demand function Q1 (defined on E2) of the first player be 
given by 

 

Q1(𝓍,𝓎) = 𝓊 - 2𝓍 + 𝓎, (2.1) 
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for every positive price pair (𝓍, 𝓎) and let analogously the demand function of the second enterprise be 
given by 

 

Q2(𝓍,𝓎) = 𝓊 - 2𝓎 + 𝓍, (2.2) 
 

for every positive bi-strategy (𝓍, 𝓎), where u is a positive constant (representing, obviously, the quantity 
Qi(0,0) demanded of good i, by the market, when both prices are fixed to be 0). 

Remark (about elasticity). The demand’s elasticity of the two functions with respect to the corresponding 
price is 

 

e1(Q1)(𝓍,𝓎) = ∂1Q1(𝓍,𝓎)(𝓍/Q1(𝓍,𝓎)) = -2𝓍/(𝓊 - 2𝓍 + 𝓎), and (2.3)  
 

e2(Q2)(𝓍,𝓎) = ∂2Q2(𝓍,𝓎)(𝓎/Q2(𝓍,𝓎)) = -2𝓎/(𝓊 - 2𝓎 + 𝓍), (2.4) 
 

for every positive bi-strategy (𝓍, 𝓎). 
 

Their values are negative, according to the economic law: produced quantities are decreasing with respect 
to their prices. So, if Emil (or Frances) increases his price, the consumers’ demand will diminish. 

Assumption 4 (payoff functions). First player’s profit function is defined, classically, by the revenue 
 

ƒ1(𝓍,𝓎) = 𝓍 Q1(𝓍,𝓎) – c = 𝓍(𝓊 - 2𝓍 + 𝓎) – c, (2.5) 
 

for every positive bistrategy (𝓍, 𝓎). Symmetrically, for Frances, the profit function is defined by 
 

ƒ2(𝓍,𝓎) = 𝓎 Q2(𝓍,𝓎) – c = 𝓎(𝓊 - 2𝓎 + 𝓍) – c, (2.6) 
 

for every positive bistrategy (𝓍, 𝓎), where the positive constant c is the fixed cost. So we assume the 
variable cost to be 0 (this is not a great limitation for our example, since our interest is the interaction between the 
two players and the presence of the variable cost does not change our approach). 

The bi-gain function is so defined by 
 

ƒ(𝓍,𝓎) = (𝓍(𝓊 - 2𝓍 + 𝓎), 𝓎(𝓊 - 2𝓎 + 𝓍)) – (c, c), (2.7) 
 

for every bistrategy (𝓍, 𝓎) of the game in the unbounded square E2. 
 

3. Study of the Bertrand’s normal form game 
When the fixed cost is zero, we can assume that Emil and Frances have the compact strategy sets  
 

𝙴 = 𝙵 = [0, 𝓊], (3.1) 
 

indeed we have the following property. 
Property. A necessary condition in order to obtain both the quantities Qi(𝓍,𝓎) positive is that the pair of 

prices (𝓍,𝓎) lies in the square E2. 
Proof. The reader can easily prove the above interesting property, by imposing the positivity conditions for 

the affine functions Qi.  
The improper Bertrand game. Besides, we will consider an extension of the Bertrand game with strategy 

spaces 𝙴 = 𝙵 = [-𝓊, 𝓊], in order to obtain a wider vision of the game itself by enlarging the bistrategy space. 
Payoff function to examine. When the fixed cost c is zero (this assumption determines only a “reversible” 

translation of the gain space), the bi-gain function ƒ from the compact square [0, 𝓊]2 into the bi-gain plane ℝ2  

(respectively the function ƒ from the square [-𝓊, 𝓊]2 into the same plane ℝ2) is defined by 
 

ƒ(𝓍,𝓎) = (𝓍(𝓊 - 2𝓍 + 𝓎), 𝓎(𝓊 - 2𝓎 + 𝓍)), (3.2) 
 

for every bistrategy (𝓍, 𝓎) in the square S = [0, 𝓊]2 (respectively, in the square S = [-𝓊, 𝓊]2 ) which is the convex 

envelope of its vertices, denoted by A, B, C, D starting from the origin (or from (- 𝓊, 𝓊)) and going anticlockwise. 
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When the characteristic price 𝓊 is 1, we will obtain the payoff vector function defined by 
 

ƒ(𝓍,𝓎) = (𝓍(1 - 2𝓍 + 𝓎), 𝓎(1 - 2𝓎 + 𝓍)), (3.3) 
 

on the strategy square 𝚂 = [0, 1]2 (or 𝚂 = [-1, 1]2). 
Now, we must find the critical space of the game and its image by the function ƒ, before representing ƒ(𝚂). 

For, we determine (as explained in (3, Carfi 2010), (6, Carfì 2009), (8, Carfì 2009), and (9, Carfì 2009) firstly the 
Jacobian matrix of the function ƒ at any point (𝓍, 𝓎) - denoted by 𝙹ƒ(𝓍,𝓎). We will have, in vector form, the pair 
of gradients 
 

𝙹ƒ(𝓍,𝓎) = ((𝓎 - 4𝓍 + 1, 𝓍), (𝓎, - 4𝓎 + 𝓍 + 1)), (3.4) 
 

and concerning the determinant of the above pair of vectors 
 

det 𝙹ƒ(𝓍,𝓎) = (-4𝓎 + 𝓍 + 1)(𝓎 - 4𝓍 + 1) – 𝓍𝓎   = -4𝓎2 + 16𝓍𝓎 - 3𝓎 - 4𝓍2 -3𝓍 + 1. (3.5) 
 

The Jacobian determinant is zero at those points (𝓍1, 𝓎1) and (𝓍2, 𝓎2) of the strategy square such that 
 

𝓎1 = -sqrt(192 𝓍1
2 - 144 𝓍1 + 25)/8 + 2 𝓍1 - 3/8, (3.6) 

 

and 
 

𝓎2 = sqrt(192 𝓍2
2 - 144 𝓍2 + 25)/8 + 2 𝓍2 - 3/8. (3.7) 

 

From a geometrical point of view, we will obtain two curves (Figure 3.1 with 𝚂 = [0, 1]2 and Figure 3.2 with 𝚂 = [-
1, 1]2); they represent the critical zone of Bertrand Game. 
 

 
 

Figure 3.1. Critical zone of Bertrand game 
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Figure 3. 2. Critical zone of improper Bertrand game 
 

4. Transformation of the strategy space 
It is readily seen that the intersection points of the yellow curve with the boundary of the strategic square 

are the two points 
 

M = (-(sqrt(73) - 13)/8, 1) ,  K = - (1,0) 
 

Remark. The point M is the intersection point of the yellow curve with the segment [C, D], its abscissa µ 
verifies the non-negative condition and the following equation 

 

8 = sqrt(192µ2 – 144µ + 25) + 16µ – 3, (4.1) 
 

this abscissa is so 
 

µ = -(sqrt(73) - 13)/8 
 

(approximately equal to 0,557). 
We start from Figure 3.1, with 𝚂 = [0, 1]2. 

The transformations of the bi-strategy square vertices and of the points H, K, M are the following: 

 Aˈ = ƒ(A) = ƒ(0, 0) = (0, 0); 

 Bˈ = ƒ(B) = ƒ(1, 0) = (-1, 0); 

 Cˈ = ƒ(C) = ƒ(1, 1) = (0, 0); 

 Dˈ = ƒ(D) = ƒ(0, 1) = (0, -1); 

 Hˈ = ƒ(H) = ƒ(1/4, 0) = (1/8, 0); 

 Kˈ = ƒ(K) = ƒ(0, 1/4) = (0, 1/8); 

 Mˈ = ƒ(M) = ƒ(µ, 1) = (2µ - µ2/4, µ - 1) approximately equal to (0,494, -0,443); 

 Lˈ = ƒ(L) = ƒ(1, µ) = (µ - 1, 2µ - µ 2/4) approximately equal to (-0,443, 0,4936). 
Starting from Figure 3.1, with 𝚂 = [0, 1]2, we can do the transformation of its sides. 

Side [A, B]. Its parameterization is the function sending any point 𝓍 ∊ [0, 1] into the point (𝓍, 0); the 
transformation of this side can be obtained by transformation of its generic point (𝓍, 0), we have 
 

ƒ(𝓍, 0) = (𝓍 - 2𝓍2, 0). (4.2) 
 

We obtain the segment with end points Hˈ and Dˈ, with parametric equations 
 

X = 𝓍 - 2𝓍2 and Y = 0, (4.3) 
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with 𝓍 in the unit interval. 
Side [B, C]. It is parametrized by  

 

(𝓍 = 1, 𝓎 ∊ [0, 1]); 
 

the figure of the generic point is 
 

ƒ(1, 𝓎) = (𝓎 – 1, -2𝓎2 + 2𝓎). (4.4) 
 

We can obtain the parabola passing through the points Cˈ, Lˈ, Dˈ with parametric equations 
 

X = 𝓎 – 1 and Y = -2𝓎2 + 2𝓎. (4.5) 
 

Side [C, D]. Its parameterization is 
 

(𝓍 ∊ [0, 1], 𝓎 = 1); 
 

the transformation of its generic point is 
 

ƒ(𝓍, 1) = (-2𝓍2 + 2𝓍, 𝓍 - 1). (4.6) 
 

We can obtain the parabola passing through the points Bˈ, Mˈ, Cˈ with parametric equations 
 

X = -2𝓍2 + 2𝓍 and Y = 𝓍 - 1. (4.7) 
 

Side [D, A]. Its parameterization is 
 

(𝓍 = 0, 𝓎 ∊ [0, 1]); 
 

the transformation of its generic point is 
 

ƒ(0, 𝓎) = (0, -2𝓎2). (4.8) 
 

We obtain the segment [Kˈ, Bˈ] with parametric equations 
 

X = 0 and Y = -2𝓎2, (4.9) 
 

with 𝓎 in the unit interval. 
Now, we find the transformation of the critical zone. The parameterization of the critical zone is defined by 

the equations 
 

𝓎1 = - sqrt(192𝓍1
2 - 144𝓍1 + 25)/8 + 2𝓍1 - 3/8 (3.6) 

 

and 
 

𝓎2 = sqrt(192𝓍2
2 - 144𝓍2 + 25)/8 + 2𝓍2 - 3/8. (3.7) 

 

The parametrization of the GREEN ZONE is 
 

(𝓍 ∊ [0, 1], 𝓎 = 𝓎1); 
 

the transformation of its generic point is 
 

ƒ(𝓍,𝓎1) = (𝓍 - 2𝓍2 + 𝓍𝓎1, 𝓎1 - 2𝓎2
1 + 𝓍𝓎1), (4.10) 

 

a parametrization of the YELLOW ZONE is 
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(𝓍 ∊ [0, 1], 𝓎 = 𝓎2); 
 

the transformation of its generic point is 
 

ƒ(𝓍,𝓎2) = (𝓍 - 2𝓍2 + 𝓍𝓎2, 𝓎2 - 2𝓎2
2 + 𝓍𝓎2). (4.11) 

 

The transformation of the Green Zone has parametric equations 
 

X = 𝓍 - 2𝓍2 + 𝓍𝓎1 and Y = 𝓎1 - 2𝓎2
1 + 𝓍𝓎1, (4.12) 

 

and the transformation of the Yellow Zone has parametric equations 
 

X = 𝓍 - 2𝓍2 + 𝓍𝓎2 and Y = 𝓎2 - 2𝓎2
2 + 𝓍𝓎2. (4.13) 

 

We have two colored curves in green and black (Figure 4.1), breaking by two points of discontinuity T and U 
obtained by resolving the following equation 
 

192𝓍2 - 144𝓍 + 25 = 0; (4.14) 
 

the solutions of the above equation are 
 

𝓍1 = - (sqrt(6) - 9)/24, 𝓍2 = (sqrt(6) + 9)/24, (4.15) 
 

and then, replacing them in the parametrical equations of the critical zone, and putting 
 

 t = 9 + sqrt(6)  with  s = - sqrt(t2/3 - 6t + 25)/8   and   u = 9 - sqrt(6)  with  v = - sqrt(-6u + u2/3 + 25)/8 
 

we obtain 
 

T1 = (t(s + t/12 - 3/8))/24 - t2/288 + t/24; 
 

T2 = -2(s + t/12 - 3/8)2 + s +(t(s + t/12 - 3/8))/24 + t/12 - 3/8, 
and,  

 

U1 = ((u/12 + v - 3/8)u)/24 + u/24 - u2/288; 
 

U2 = ((u/12 + v - 3/8)u)/24 + u/12 - 2(u/12 + v - 3/8)2 + v - 3/8. 
 

So, we obtain - approximately - the point 
 

T = (0,298,  0,185), 
 

and the point  
 

U = (0,171,  0,159). 
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Figure 4. 1. Payoff space of Bertrand game 
 

Payoff space of the improper Bertrand’s game 
Starting from the Figure 3.2 with 𝚂 = [-1, 1]2; the projections of bi-strategy square’s points are the 

following: 

 Aˈ = ƒ(A) = ƒ(-1, -1) = (-2, -2); 

 Bˈ = ƒ(B) = ƒ(1, -1) = (-2, -4); 

 Cˈ = ƒ(C) = ƒ(1, 1) = (0, 0); 

 Dˈ = ƒ(D) = ƒ(-1, 1) = (-4, -2); 

 Hˈ = ƒ(H) = ƒ(0, -1) = (0, -3); 

 Kˈ = ƒ(K) = ƒ(-1, 0) = (-3, 0); 

 Mˈ = ƒ(M) = ƒ(µ, 1) = (2µ - µ2/4, µ - 1)   approximately equal to (0,494, -0,443); 

 Lˈ = ƒ(L) = ƒ(1, µ) = (µ - 1, 2µ - µ 2/4)   approximately equal to (-0,443, 0,4936). 
Starting from Figure 3.2 with 𝚂 = [-1, 1]2, we can do the transformation of its sides. 

Side [A, B]. Its parametric form is 
 

(𝓍 ∊ [-1, 1], 𝓎 = -1); 
 

the transformation of its generic point is 
 

ƒ(𝓍, -1) = (-2𝓍2, -𝓍 – 3). (4.16) 
 

We can obtain the parabola passing through the points Aˈ, Hˈ, Bˈ with 
 

X = -2𝓍2 and 𝑌 = -𝓍 – 3. (4.17) 
 

Side [B, C]. Its parameterization is 
 

(𝓍 = 1, 𝓎 ∊ [-1, 1]); 
 

the transformation of its generic point is 
 

ƒ(1, 𝓎) = (𝓎 -1, -2𝓎2 + 2𝓎). (4.18) 
 

We can obtain the parabola passing through the points Bˈ, Lˈ, Cˈ with 
 

X = 𝓎 -1 and 𝑌 = -2𝓎2 + 2𝓎. (4.19) 
 

Side [C, D]. Its parameterization is 
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(𝓍 ∊ [-1, 1], 𝓎 = 1); 
 

the transformation of its generic point is 
 

ƒ(𝓍, 1) = (-2𝓍2 + 2𝓍, 𝓍 - 1). (4.20) 
 

We can obtain the parabola passing through the points Cˈ, Mˈ, Dˈ with parametric equations 
 

X = -2𝓍2 + 2𝓍 and 𝑌 = 𝓍 - 1. (4.21) 
 

Side [D, A]. Its parameterization is 
 

(𝓍 = -1, 𝓎 ∊ [-1, 1]);  
 

the transformation of its generic point is 
 

ƒ(-1, 𝓎) = (-𝓎 – 3, -2𝓎2). (4.22) 
 

We can obtain the parabola passing through the points Dˈ, Kˈ, Aˈ with parametric equations 
 

X = -𝓎 – 3 and 𝑌 = -2𝓎2. (4.23) 
 

For the transformation of the critical zone and the coordinates of the points of discontinuity please refer to the 
case𝚂 = [0, 1]2, we must remember only to widen the interval considered from 𝓍, 𝓎 ∊ [0, 1] to 𝓍, 𝓎 ∊ [-1, 1]. 
 

 

 
Figure 4. 2. Payoff space of the improper Bertrand game 

 

5. Non-cooperative friendly phase 
Examining the Figure 4.1, in which 𝚂 = [0, 1]2, we will note that the game has two shadow extremes, that 

is the shadow minimum 𝛼 = (-1, -1) and the shadow maximum 𝛽 = (1/2, 1/2). 

The Pareto minimal boundary of the payoff space ƒ(𝚂) is showed in the Figure 5.1 by the union of two 
segments 

[Aˈ, Bˈ] ∪ [Dˈ, Aˈ], and it is colored in orange. 
The Pareto maximal boundary of the payoff space ƒ(𝚂) is the union of the two curve segments, on the 

transformations of the critical zone, with extreme points the pair of points (Lˈ, T) and (T, Mˈ). They are colored in 
green and in black. Both Emil, and Frances do not control the Pareto maximal boundary; they could reach the 
point L' and M' of the boundary, but the solution is not many satisfactory for them. In fact, a player will suffer a 
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loss and the other one will have a small win. Examining the Figure 4.2, in which 𝚂 = [-1, 1]2, we will note that the 
game has two shadow extremes, that is the shadow minimum 

 

𝛼 = (-4, -4) and the shadow maximum 
 

𝛽 = (1/2, 1/2). 
 

The Pareto minimal boundary ƒ(𝚂) is showed in the Figure 5.2, it has only two points, the points Dˈ and 
Bˈ; observe that the weak minimal Pareto boundary is formed by the points Dˈ, Aˈ, Bˈ and that the curve colored 
in yellow is Pareto minimal in the ultra-weak sense, this means only that if we fix one of the coordinate, in the 
canonical Cartesian projections of this curve, the other coordinate reaches its minimum exactly on the yellow 
curve. For Pareto maximal boundary ƒ(𝚂), in the case 𝚂 = [0, 1]2, is the union of the boundary curves with end-
points the pairs (Lˈ, T) and (T, Mˈ), respectively. 
 

 
 

Figure 5. 1. Extrema of the Bertrand game 
 

 
 

Figure 5. 2. Extrema of the improper Bertrand game 
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6. Properly non-cooperative (egoistic) phase 
Now, we will consider the best reply correspondences between the two players Emil and Frances, in the 

cases 𝚂 = [0, 1]2 and 𝚂 = [-1, 1]2. 

If Frances sells the commodity at the price 𝓎, Emil, in order to reply rationally, should maximize his partial 
profit function 

 

ƒ1(∙, 𝓎) : 𝓍 ↦ 𝓍(1 - 2𝓍 + 𝓎), (6.1) 
 

on the compact interval [0, 1] or [-1, 1]. 
According to the Weierstrass theorem, there is at least one Emil’s strategy maximizing that partial profit 

function and, by Fermàt theorem, the Emil’s best reply strategy to Frances’ strategy 𝓎 is the only price 
 

B1(𝓎) = 𝓍* := (1/4)(𝓎 + 1). (6.2) 
 

Indeed, the partial derivative 
 

ƒ1(∙, 𝓎)ˈ(𝓍) = -4𝓍 + 1 + 𝓎, (6.3) 
 

is positive for 𝓍 < 𝓍* and negative for 𝓍 > 𝓍*. 
So, the Emil’s best reply correspondence is the function B1 from the interval [0, 1] into the interval [0,1], defined 
by 
 

𝓎 ↦ (1/4)(𝓎 + 1), (6.4) 
 

in the proper case, and B1 from [-1, 1] into [-1,1], defined by 
 

𝓎 ↦ (1/4)(𝓎 + 1), (6.5) 
 

in the improper one. 
As we already observe, our Bertrand game is a symmetric game, therefore the Frances’ best reply 
correspondence is the function B2 from [0, 1] into [0,1], defined by 

 

𝓍 ↦ (1/4)(𝓍 + 1), (6.6) 
 

In the proper case, or the function B2 from [-1, 1] into [-1,1] defined by 
 

𝓍 ↦ (1/4)(𝓍 + 1), (6.7) 
 

in the improper one. 
The Nash equilibrium is the fixed point of the symmetric Cartesian product function B of the pair of two reaction 
functions (B2,B1) defined (canonically) from the Cartesian product of the domains into the Cartesian product of the 
codomains (in inverse order), by  

 

B : (𝓍, 𝓎) ↦ (B1(𝓎), B2(𝓍)), (6.8) 
 

that is the only bi-strategy (x,y) satisfying the below system of linear equations 
 

𝓍 = (1/4)(𝓎 + 1), 𝓎 = (1/4)(𝓍 + 1), (6.9) 
 

that is the point N = (1/3, 1/3) - as we can see also from the two Figures 6.1 and 6.2 - which determines a bi-gain 
 

Nˈ = (2/9, 2/9), 
 

as Figures 6.3 and 6.4 will show. 
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The Nash equilibrium is not completely satisfactory, because it is not a Pareto optimal bi-strategy, but it 
represents the only properly non-cooperative game solution. 

Remark (demand elasticity at Nash equilibrium). Concerning the Nash equilibrium, we can also calculate 
the demand’s elasticity with respect to the corresponding price. At first, we must remember the two demand 
functions, and then we obtain 

 

e1(Q1)(𝓍,𝓎) = ∂1Q1(𝓍,𝓎)(𝓍/Q1(𝓍,𝓎)) = (-2𝓍/(𝓊 - 2𝓍 + 𝓎)), (6.10) 
 

and 
 

e2(Q2)(𝓍,𝓎) = ∂2Q2(𝓍,𝓎)(𝓎/Q2(𝓍,𝓎)) = (-2𝓎/(𝓊 - 2𝓎 + 𝓍))   (6.11) 
 

Then, we have 
 

e1(Q1)(𝑁) = ∂1Q1(N)((1/3)/Q1(𝓍,𝓎)) = (-(2/3)/(1 – (2/3) + (1/3))) = -1  (6.12) 
 

and 
 

e2(Q2)(𝑁) = ∂2Q2(N)((1/3)/Q2(𝓍,𝓎)) = (-(2/3)/(1 – (2/3) + (1/3))) = -1  (6.13) 
 

So we can deduce that: 
at the non-cooperative equilibrium N, since 
 

|e1(Q1)(𝑁)| = 1 and |e2(Q2)(𝑁)| = 1, (6.14) 
 

the demands will be elastic with respect to the prices; therefore if the price increases of one unit, demand will 
reduce of one unit too. 
 

 
 

Figure 6. 1. Nash Equilibrium of the proper game 
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Figure 6. 2. Nash equilibrium of the improper game 
 

 
 

Figure 6. 3. Payoff at Nash equilibrium of the proper Bertrand game 
 

 
 

Figure 6. 4. Payoff at Nash equilibrium of the improper game 
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7. Defensive and offensive phase 
Players’ conservative values are obtained through their worst gain functions. 

Worst gain functions. On the square 𝚂 = [0, 1]2, Emil’s worst gain function is defined by 
 

ƒ#
1(𝓍) = inf𝓎 ∊ 𝙵 𝓍(1 - 2𝓍 + 𝓎) = 𝓍 - 2𝓍2, (7.1) 

 

its maximum will be 
 

v#
1 = sup𝓍 ∊ 𝙴 (ƒ#

1(𝓍)) = sup𝓍 ∊ 𝙴 (𝓍 - 2𝓍2) = 1/8, (7.2) 
 

attained at the conservative strategy 𝓍# = 1/4. 
Symmetrically, Frances’ worst gain function is defined by 
 

ƒ#
2(𝓎) = 𝓎 - 2𝓎2, (7.3) 

 

its maximum will be v#
2 = 1/8 attained at the unique conservative strategy 𝓎# = 1/4. 

Conservative bivalue. The conservative bivalue is 
 

v# = (v#
1, v#

2) = (1/8, 1/8). 
 

The worst offensive multifunctions are determined by the study of the worst gain functions. 
The Frances’ worst offensive reaction multifunction 𝖮2 is defined by 𝖮2(𝓍) = 0, for every Emil’s strategy 𝓍; 

indeed, fixed an Emil’s strategy 𝓍 the Frances’ strategy 0 minimizes the partial profit function ƒ1(𝓍, .). 
Symmetrically, the Emil’s worst offensive correspondence versus Frances is defined by 𝖮1(𝓎) = 0, for every 

Frances’ strategy 𝓎. 
The dominant offensive strategy is 0 for both players, indeed the offensive correspondences are constant. 
The offensive equilibrium A = (0,0) bring to the payoff Aˈ = (0, 0), in which the profit is zero for both 

players. 
The core of the payoff space (in the sense introduced by J.P. Aubin) is the part of the Pareto maximal 

boundary contained in the cone of upper bounds of the conservative bi-value v#; the conservative bi-value gives 
us a bound for the choice of cooperative bistrategies. 

Conservative phase of the Extended Bertrand game 
If the strategy space is the extended square 𝚂 = [-1, 1]2, Emil’s worst gain function is defined by 
 

ƒ#
1(𝓍) = inf𝓎 ∊ 𝙵 𝓍(1 - 2𝓍 + 𝓎) =  -2𝓍2, (7.4) 

 

its maximum will be 
 

v#
1 = sup𝓍 ∊ 𝙴 (ƒ#

1(𝓍)) = sup𝓍 ∊ 𝙴 (-2𝓍2) = 0, (7.5) 
 

attained at the conservative strategy 𝓍# = 0. 
Symmetrically, Frances’ worst gain function is defined by 
 

ƒ#
2(𝓎) = -2𝓎2, (7.6) 

 

its maximum will be v#
2 = 0, attained at the conservative point 𝓎# = 0. 

The conservative bivalue in the improper case is 
 

v# = (v#
1, v#

2) = (0, 0). 
 

The worst offensive multifunctions can be determined by the study of the worst gain functions. 
For every strategy Emil could choose, he has the minimum gain when Frances sells his commodity at the price -
1. This result is unusual from an economic point of view, but it can make sense in a short period deep 
competition. 
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Then Frances’ worst offensive multifunction is defined by 𝖮2(𝓍) = -1, for every Emil’s strategy 𝓍; symmetrically, 
we obtain 𝖮1(𝓎) = -1, for every Frances’ strategy 𝓎. 
The dominant offensive strategy is -1 for both players, and the offensive (dominant) equilibrium A = (-1, -1) brings 
to the point Aˈ = (-2, -2), in which a severe loss is registered for both players. 
The conservative knot of the game is the point (0, 0), whose image is the point (0, 0), which coincides with the 
point Cˈ. 

The core of the payoff space is the part of Pareto maximal boundary contained into the cone of upper bounds 
of the conservative bi-value v#; this bounds the choice of cooperative bistrategies. 
 

8. Cooperative phase  
When there is an agreement between the two players, the best compromise solution (in the sense 

introduced by J.P. Aubin) is the pair of strategies (1/2, 1/2), showed graphically in the Figures 8.1 and 8.2. This 
compromise bi-strategy determines the bi-gain (1/4, 1/4). 

Besides, the best compromise solution coincides with the core best compromise, with the Nash bargaining 
solution, with the bistrategy with closest bi-gain to the shadow maximum and with the Kalai-Smorodinsky 
bargaining solution. It coincides also with the transferable utility solution which is the unique Pareto strategy that 
maximizes the aggregate utility function f1 + f2, this can be easily viewed by geometric evidences considering on 
the payoff universe the levels of that aggregate function, which are affine lines parallel to the vector (1,-1). 

Selection of Pareto solutions. The Nash equilibrium can help in the selection of Pareto solutions (Figures 
8.3 and 8.4). Indeed, if Emil and Frances decide to cooperate their possible choices will lead to those points of 
Pareto boundary which are also upper bounds of the Nash Equilibrium, in order to obtain a compromise solution 
strictly better than the non-cooperative one. 

 

 
 

Figure 8. 1. Conservative study 
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Figure 8. 2. The core and the Kalai-Smorodinsky payoff of the proper game 
 

 
 

Figure 8. 3. Conservative exam of the improper Bertrand game 
 

 
 

Figure 8. 4. The Core of the improper Bertrand game 
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Figure 8. 5. Compromise solutions of Bertrand game 
 

 
 

Figure 8. 6. Compromise solutions of improper Bertrand game 
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