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SOME CONVERGENCE RESULTS ON  
DYNAMIC FACTOR MODELS 

 
Maddalena CAVICCHIOLI 

University of Venice, Italy 
Advanced School of Economics 
maddalena.cavicchioli@unive.it 

Abstract: 
We review some recent papers on a large dynamic factor model (LDFM) and its applications to structural 

macroeconomic analysis. Then we prove some convergence results concerning with the stochastic variables 
which define such a model. 
 

Keywords: dynamic factor model, fundamentalness, identification, estimation, consistency, convergence. 
 

JEL Classification: C01, C32, E32. 
 

1. Introduction 

Factor models have been used by several authors to address many different economic issue 
nowadays. Some literature has focused on models specifically designed to handle a large amount of 
information: the  generalized dynamic factor models (Forni, Hallin, Lippi and Reichlin, 2000; Forni and 
Lippi, 2001; Bai and Ng, 2002). Such models have been successfully used for forecasting and, recently, 
also for structural macroeconomic analysis (Forni, Giannone, Lippi, Reichlin, 2009, FGLR from now on; 
Forni and Gambetti, 2010). 

The main idea underlying factor analysis is that a large set of variables can be explained by a 
small number of latent variables, the  factors, which are responsible for all the relevant dynamics. Factor 
analysis is a technique of dimension reduction that takes the information contained in a large data set 
and summarizes it by means of few unobservable variables. In this context, it is assumed that 
macroeconomic observable variables are represented as the sum of two unobservable components, 
called the common component and the idiosyncratic component. The common component captures that 
part of the series which comove with the rest of the economy and the idiosyncratic component is the 
residual. The idiosyncratic components are not necessarily orthogonal to each other and they are not of 
direct interest for the analysis since they arise from measurement errors or sectoral sources of variation. 
The vector of the common components is highly singular, i.e., it is driven by a very small number of 
shocks (the "common shocks" or "common factors") as compared to the number of variables. 

Furthermore, the relation between the common part of the observable series and the factors is 
assumed to be linear. Structural analysis requires the identification of the macroeconomic shocks and 
their dynamic effect on macroeconomic variables. The approach is a combination of structural vector 
autoregression (SVAR) analysis and large-dimensional dynamic factor models. More precisely, the 
factor model is used to consistenly estimate common and idiosyncratic components of macroeconomic 
variables. Then the identification of the relationship between common components and macroeconomic 
shocks can be obtained just in the same way as in SVAR models, and the impulse response functions 
can be consistently estimated by means of a relatively simple procedure. 

In this paper we review some recent papers on a large dynamic factor model and its applications 
to structural macroeconomic analysis. Then we prove some convergence results concerning with the 
stochastic variables which define such a model. 
 
2. A Dynamic Factor Model 

In this section we illustrate the basic definitions and results concerning with a dynamic factor 
model, briefly called the model FGLR, introduced and studied by Forni, et al. (2009). 

mailto:maddalena.cavicchioli@unive.it
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1) The model. Denote by =1, , ; =1, ,= ( )T

n it i n t Txx  an Tn  rectangular array of observations, and 

make two preliminary assumptions: 

PA1. The array T

nx  is a finite realization of a real-valued stochastic process 

 
where the n -dimensional vector processes   

Nnnttnt Ztxxx


 :...
'

1  are stationary, with zero mean 

and finite second-order moments 
'

,= ( )x

nk nt n t kE  x x   for every Nk . 

PA2. For all Nn , the process  Ztxnt :  admits a Wold representation ,

=0

= n

nt k n t k

k

C


x w  , 

where the full-rank innovations ntw  have finite moments of order four and the matrices )(= ,

n

kij

n

k cC  

satisfy ,

=0

| | <n

ij k

k

c


  for all .,, Nnji   

The model FGLR is obtained by assuming that each variable itx  is the sum of two unobservable 

components ,= itititx    where it  (resp. it ) is called the common (resp. idiosyncratic) 

component. The common component it  is driven by q  common shocks 
'

1= ( )t t qtu uu  for q  

independent of n  and nq << . More precisely: 

FM0. (Dynamic factor structure of the model FGLR) 

Defining '

1 )(= nttnt  χ  and '

1 )(= nttnt  ξ , suppose that 
 

= = ( )nt nt nt n t ntB L x χ ξ u ξ
  (1.1) 

 

where tu  is a q-dimensional orthonormal white-noise vector, that is, 
'( ) =t t qE u u I  for all t . The shocks 

tu  will be called dynamic factors. 

Moreover, assume that 
 

( ) = ( )n nB L A N L
  (1.2) 

 

where: 
 

i) )(LN  is an qr  absolutely summable matrix function of L , that is, 

,

=0 =0

( ) = | | <k

k jh k

k k

N L L
 

  Ψ
for all j,h 

 

where 

qhrjkjhk 1,...,=;1,...,=, )(= Ψ  
 

ii)
rjniijn aA 1,...,=;1,...,=)(=  is an rn  matrix, nested in mA  for all nm > . 

 

Defining the 1r  vector '

1= ( )t t rtf ff , called the static factor, as 
 

= ( )t tN Lf u
  (1.3) 

 

Equation (1.1) can be rewritten in the static form 
 

=nt n t ntA x f ξ
  (1.4) 

 

From (1.1) and (1.4) we get 
 

=nt n tAχ f
  (1.5) 
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hence 
 

=1

= .
r

it ij jt

j

a f   

This means that all the variables it , ,1,= i , belong to the finite dimensional vector space 

spanned by '

1= ( )t t rtf ff . 

Following Forni, et al. (2009), we are going to illustrate some conditions under which the shocks 

t
u  can be identified and estimated by means of the observable variables itx . First, we recall the 

assumptions necessary for the identification and the estimation of the common components it . 

FM1. (Orthogonality of common and idiosyncratic components) 

For all n , the vector ntξ  is stationary, and '( ) = 0t nE u ξ  for any Zt ,   and Nn . 

Let 
'

,= ( )x

nk nt n t kE  x x ,   )(= '

, ktnntnk E  χχ


 and   )(= '

, ktnntnk E  ξξ


 be the k -lag covariance 

matrices of ntx ,  ntχ  and   ntξ , respectively. Denote by 
x

nj , 
nj  and 

nj  the j th eigenvalues, in 

decreasing order, of x

n0 , 
0n  and 

0n , respectively. 

FM2. (Pervasiveness of common dynamic and static factors) 

a) The complex matrix )( ieN    has (maximum) rank q   for    almost everywhere in ],[  ; 

b) There exist positive real constants jj cc < , rj ,1,=  ,  such that 1> jj cc , 

1,1,= rj  ,  and 
 

j
nj

n

nj

n
j c

n
limsup

n
liminfc 



 
 

 

Proposition 1.1 Under assumption FM2, the rr  matrix nn AA '  has full rank r  for n  sufficiently 

large. 

Assumption FM2 also implies that the common components it  are identified (see Chamberlain, 

and Rothschild (1983)), and that the number q  is unique, i.e., a representation of type (1.1) - (1.4) with 

a different number of dynamic factors is not possible (see Forni and Lippi (2001)). 
FM3. (Non-pervasiveness of the idiosyncratic components) 

There exists a real number d  such that dn  1   for any Nn . This obviously implies that 

dnj 
  for any Nn  since such eigenvalues are in decreasing order. 

Assumption FM3, jointly with the identification of the common components it , implies that the 

vector space spanned by the r  static factors rtt ff ,,1   (in tf ) is identified, or, equivalently, tf  is 

identified, up to non-singular linear transformation. 
In conclusion, given a model of type (1.1)-(1.4), then under assumption FM0-FM3 the integers q  

and r , the components it  and it , and the vector space spanned by tf  are identified. 

2) Fundamentalness. First we recall briefly some basic notions on fundamental representations 

of stationary stochastic vectors. Assume that the n  stochastic vector tμ  admits a moving average (MA) 

representation 
 

= ( )t tK Lμ v
  (2.1) 

 

where )(LK  is an qn  square-summable filter and t
v  is a q-dimensional white noise.  
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Definition 2.1 If 
tv  belongs to the vector space spanned by present and past values of tμ , then 

the MA in (2.1) is said to be fundamental, and tv  is called fundamental for tμ . 

Without loss of generality, we can suppose that nq   and that tv  is full rank. Moreover, for our 

purpose, we can suppose that the entries of )(LK  are rational functions of L  and that the rank of 

)(zK , Cz , is maximal, i.e., it is q  except for a finite number of complex numbers. 

Proposition 2.1 The MA representation in (2.1) is fundamental if and only if the rank of )(zK  is 

q  for all complex numbers z  such that 1|<| z . For the proof, see Rozanov (1967). 

Fundamentalness plays an important role for the identification of the structural shocks in SVAR 

analysis. SVAR analysis starts with the projection of a full rank q -dimensional vector tμ  on its past, 

thus producing an q -dimensional full rank fundamental white-noise tw . Then the structural shocks are 

obtained as a linear transformation tAw , where the matrix A  arises from economic theory statements. 

This is equivalent to assume that the structural shocks are fundamental. 
Fundamentalness has here the effect that the identification problem is enormously simplified. 

However, economic theory, in general, does not provide support for fundamentalness, so that all 
representations that fulfill the same economic statements, but are not fundamental, are ruled out in 
SVAR analysis with no justification. Such representations, although they imply the same autocovariance 
structure, cannot be obtained from inversion of estimated VARs. The situation changes if the structural 
analysis is conducted assuming that n  is large with respect to q . The fundamentalness is also required 

by dynamic factor models but it is a condition less pressing than in VARs. The first reason is that non 
fundamentalness of structural shocks arises when the econometrician's information set is smaller than 
the agent's. The second reason comes from a mathematical background. Precisely, a crucial step in our 

analysis is the dynamic specification of the common components ntχ  as vector autoregression (VAR) 

driven by only q  macroeconomics shocks tu , i.e., = ( )nt n tA N Lχ u , where nq < . So the model 

contains only q  variables; suppose such variables are jt , qj 1,...,= , and they cannot ensure 

fundamentalness of tu . By Proposition 2.1, the rank of )(zBn  is less than q  for some complex number 

z  with 1|<| z , or equivalently, the polynomials )(zBnj , qj 1,...,= , have a common root. However, 

the informational advantage of the agents may disappear if the econometrician observes a large set of 

additional macroeconomic shocks. The generating process of jt , nqj 1,...,=  , contains 

parameters that do not belong to the generating process of jt , qj 1,...,= , and viceversa. Therefore, 

with all likelihood, their dynamic responses to tu  are sufficiently heterogeneous, with respect to the first 

q , to prevent the rank reduction of )(zBn . Now Assumption FM2(b) gives that, for n  sufficiently large, 

nA  has full rank r . Then )(LN  has full rank q  and it is left-invertible. So the concept of 

fundamentalness can be adapted to our specification of the dynamic factor model, as follows: 
FM4. (Fundamentalness) 
The matrix function )(LN  in (1.2) is left invertible, i.e., there exists an rq  square-summable 

filter )(LG  such that ( ) ( ) = .qG L N L I  

The following proposition shows that FM4, jointly with FM2, imply fundamentalness in the sense 
of Definition 2.1. 

Proposition 2.2 If FM0-FM4 are satisfied,then tu is fundamental for ntχ  for n  sufficiently large, 

and therefore fundamental for it , =1, ,i  .Moreover, tu belongs to the vector space spanned by 

present and past values of itx , ,1,= i ,  that is, the shocks htu  can be recovered as limits of linear 

combinations of the variables itx . For the proof see Forni, et al. (2009). 
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To introduce the last assumption, a VAR specification for 
tf , let us consider the orthogonal 

projection of tf  on the space spanned by its past values 
 

1 2= ( | , ,...)t t t t tProj   f f f f w
  (2.2) 

 

where tw  is the r -dimensional vector of the residuals. Under our assumptions, tw  has rank q . 

Moreover, assumption FM4 implies that = ,t tRw u  where R  is a maximum-rank qr  matrix. In the 

sequel we will adopt the VAR( p ) specification: 

FM4’. (Fundamentalness: VAR( p ) specification) 

The r - dimensional static factors 
tf  admit a VAR( p ) representation 

 

1 1=t t p t p tD D R   f f f u
  (2.3)

 

where iD  is rr  and R  is a maximum-rank matrix of dimension qr . 

By (2.3) we have 
 

1

1= ( )p

t p tI D L D L R  f u
 

 

Hence 
 

1

1= ( )p

nt n p tA I D L D L R  χ u
 

 

by (1.5). So Equation (1.1) yields 
 

1

1( ) = ( )p

n n pB L A I D L D L R  
  (2.4) 

 

called the impulse-response function (IRF) of the lags L . 
 

3) Estimation. The following procedure of estimation can be found in Forni and Gambetti (2010) 
(see also Forni, et al. (2009) Sect.4.2). 

Step 1) First, we need to set value for the number r  of the static factors '

1= ( )t t rtf ff . Bai and 

Ng (2002) proposed some consistent criteria to determine an estimation of r . Let r̂  denote an 
estimation of r  obtained by such criteria. 

Step 2) We estimate the static factors tf , up to a non-singular linear transformation, by means of 

the first r̂  ordinary principal components of the variables ntx  in the data set. Setting 
 

'

,

= 1

1ˆ =
T

x

k nt n t k

h kT




  x x

 
 

and 
x

ĵ  the j th greatest eigenvalue of the sample variance matrix 
x

0̂ , the ordinary principal 

components method gives 
 

11 1 1

12 2 2

' '

ˆ1

ˆ ˆ1

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ= ( ) = =

ˆ ˆ

n t

n t

t t rt n nt

r nr nt

a a x

a a x

f f A

a a x

  
  
  
  
  
  
  
  

f x
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where nÂ  is the rn ˆ  matrix having on the j th column the normalized eigenvector 
'

21 )ˆˆˆ(=ˆ
njjjj aaaa   corresponding to 

x

ĵ  for nrj ˆ1,...,= , hence 
 

.)ˆˆˆ(=

ˆˆ

ˆˆ

ˆˆ

=ˆ ''

ˆ

'

2

'

1

ˆ1

ˆ221

ˆ111

r

rnn

r

r

n aaa

aa

aa

aa

A 































 
 

Step 3) We set a number of lags p̂  and run a VAR( p̂ ) as in (2.3) with the estimated static 

factors ˆ
tf  to get estimates )(ˆ LD  and ˆ

tε  of the matrix function )(LD  and the residuals 
t
ε , 

respectively. Recall that =t tR u  in (2.3). 

Step 4) We estimate the number q  of the dynamic factors 
'

1= ( )t t qtu uu  obtained by using 

three criteria which were described in Bai and Ng (2007), Stock and Watson (2005), and Onastki 
(2009), respectively. Denote this estimate by q̂ . 

Step 5) Now let ̂  denote the sample variance-covariance matrix of the estimated residuals tε̂ . 

Having an estimate q̂  of the number of dynamic factors 
'

ˆ1= ( )t t qtu uu , we obtain an estimate of a 

non-structural representation of the common components by using the spectral decomposition ̂ . 

More precisely, let 
 j

ˆ , qj ˆ,1,=   be the j th eigenvalue of ̂ , taken in decreasing order, 

|ˆ>|...|>ˆ| ˆ1

  q . Let )ˆ(=ˆ  jDiagM  be the qq ˆˆ  diagonal matrix with  j
ˆ  as its ),( jj -entry, 

and K̂  the qr ˆˆ  matrix having on the columns the normalized eigenvectors corresponding to 
  q̂1

ˆ,...,ˆ . Then the spectral decomposition states ,ˆˆ=ˆˆˆˆ=ˆ ''' SSKMMK  where MKS ˆˆ=ˆ . Thus our 

estimated matrix of non-structural impulse-response functions in (2.4) is .ˆ))(ˆ(ˆ=)(ˆ 1SLDALC nn


 Recall 

that by definition we have HLBLC nn )(=)(  and ,)(=)( 1RLDALB nn

  where '= SHR . 

Step 6) Finally, we obtain Ĥ  by imposing our identification restrictions on .ˆ)(ˆ=)(ˆ 'HLCLB mm  

Thus we get estimates 
 

' 1ˆ ˆˆ ˆ ˆ ˆ ˆ= ( ) = ( ) .n nR SH B L A D L R

  (3.1)
 

 
3. Consistency 

Consistency of RLDALB nn
ˆ)(ˆˆ=)(ˆ 1

 as estimator of the impulse-response function )(LBn  for 

large cross-sections and large sample size, that is, Tn, , was proved in Forni et al.(2009), 

Proposition 3. For this, it is necessary to state a last assumption. 

FM5. Denote by 
x

kij,  and 
x

kij,̂  the ),( ji -entries of x

k  and 
x

k̂ , respectively. There exists a 

positive real number   such that 
 

 <])ˆ[( 2

,,

x

kij

x

kijET 
 

 

for 0,1=k  and for all positive integers ji,  and T . 
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Proposition 3.1  Let )(ˆ Lbni   and )(Lbni   denote the i - th rows of the matrix functions )(ˆ LBn  

and )(LBn , respectively.  Under assumptions PA1-2  and FM1-5, )(ˆ Lbni , for a fixed i , is a consistent 

estimator of )(Lbni , that is, 
 

ˆ ( ) = ( )
nt

ni niplimb L b L
   

 

where ),(= Tnminnt , n  is the number of variables, and T is the number of observations over 

time. 
For the proof see Forni, et al.(2009). 
Proposition 3.1 states that consistency is achieved along any path for ),( Tn  with n  and T  both 

tending to infinity. The consistency rate is given by ),(= Tnminnt . This implies that if the 

cross-section dimension n  is large relative to the sample size T , that is, 0/ nT , the rate of 

consistency is T , the same we would obtain if the common components were observed, that is, if the 

variables were not contamined by idiosyncratic components. On the other hand, if 0/ Tn , then the 

consistency rate is n  reflecting the fact that the common components are not observed but have to 

be estimated. 

Here we give a simplified proof of Proposition 3.1. For an nm  real matrix = ( )ijaA , the  matrix 

norm || ||A  of A  is defined as 2 '

1 1

|| ||= = ( ).
m n

ij

i j

a tr
 

A A A  Let E  and F  be two nn  

symmetric matrices and denote by )(j , nj ,1,=  , the eigenvalues in decreasing order of 

magnitude. We shall use the well--known inequalities due to Weyl: 
 

2 2

1| ( ) ( ) | ( ) ( ) =|| || .j j tr     E F E F F F
 

 

Denote by n  and Λ̂n , the rr  diagonal matrices having on the diagonal elements the first r  

largest eigenvalues of )(= '

0 ntntn E χχ
  and 

'

0
ˆ ˆ ˆ= ( )x

n nt ntE x x , respectively. Let us recall here our 

notation for the eigenvalues of the relevant matrices: 
 

0 0 0
ˆˆ:= ( ), := ( ), := ( )x x x x

nj j n nj j n nj j n

        
    and     0:= ( ).nj j n

     

 

Hence we have ),,(= 1

  nrnn Diag   and ).ˆ,,ˆ(=ˆ
1

x

nr

x

nn Diag    

From (1.5) and Step 2, Section 2, nA  and nÂ  are the rn  matrices having on the columns the 

normalized eigenvectors corresponding to 
nj  and 

x

nĵ  for nrj ,1,=  , hence we have 

'

0 = nnnn AA   and .ˆˆˆ=ˆ '

0 nnn

x

n AA   
 

Lemma 3.2 Under assumptions PA1-2  and FM0-5,  as Tn, , we have 
 

(i) )(=])ˆ[(=||ˆ||
2

2

00

2

00
T

n
Otr p

x

n

x

n

x

n

x

n   

(ii) )
1

()
1

(
1

=ˆ
1

T
O

n
O

nn
ppnj

x

nj   for rj ,1,=   
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Proof. By assumption FM5 there exists a positive constant  such that for all NT  and 

Nji . ,  <])ˆ[( 2

,0,0

x

ij

x

ijET   as T , where 
x

ij,0̂  and 
x

ij,0  denote the ),( ji -entries of x

n0̂  

and x

n0 , respectively. We have 
 

2 2

0 0 ,0 ,0

=1 =1

ˆ ˆ[( ) ] = ( ) .
n n

x x x x

n n ij ij

i j

tr     
 

 

Taking expectations yields 
 

2
2 2

,0 ,0 ,0 ,0

=1 =1 =1 =1

ˆ ˆ0 ( ) = [( ) ] <
n n n n

x x x x

ij ij ij ij

i j i j

n
E E

T


   

 
   

 
 

 
 

hence 
 











T

n
Op

x

n

x

n

2
2

00 =||ˆ||

    

which proves (i).

 
 

Turning to (ii), from the Weyl inequality, we have (use also(i)): 
 











T

n
Otr p

x

n

x

n

x

nj

x

nj

2
2

00

2 =])ˆ[()ˆ( 

 
 

hence 
 

.=])ˆ[(|ˆ|0 2

00 









T

n
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Moreover, from assumptions FM0-3 
 











n
O

nn

d

nnnnnn
pnjnjnnjnjnj

x

nj

11
=

11111
=

1
1

 
 

 

since dnnj    1  by FM3. Then we have: 
 



















n
O

T

n
O

nnn
ppnj

x

nj

x

nj

x

njnj

x

nj

1
=)(

1
)ˆ(

1
=)ˆ(

1  

  

which proves (ii). 

 
 
From Section 2, Step 6, we have: 
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Here we assume for simplicity the VAR specification with one lag, the extension to a finite number 
of lags being immediate. 
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Moreover, we have: 
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by assumption FM3. The statement (ii) follows. The statements (iii) and (iv) can be proved by 
similar arguments. 

Proof of Proposition 3.1. By Lemma 3.3 (ii) nn AA ˆ'
 converges to rI  as Tn,  hence nÂ  

converges to nA  as Tn, . By Lemma 3.3 (iv) nR̂  converges to nR  as Tn, . Continuity of 

the matrix product (notice that nD  has fixed dimension r ), implies: 
 



















T
O

n
ODD pp

h

n

h

n

11
)(=)ˆ(

 
 

hence 
h

nD )ˆ(  converges to h

nD )( , as Tn, , for any Nh .  

Thus the matrix function )(ˆ LBn  converges entry-by-entry to )(LBn  as Tn, . This 

completes the proof of the consistency. 
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4. Further Convergence Results 

The following result states that ntχ̂  converges to ntχ  in mean square. See Forni et al.(2000), 

Proposition (2), for a different proof. 
 

Proposition 4.1 
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The expectation operator can be moved inside summation because the considered matrix series 
are absolutely summable. Now the result follows from Proposition 3.1. 

This implies that ntχ̂  is a consistent estimator of ntχ , that is, ˆ = .nt nt
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Now the idiosyncratic components itξ  are orthogonal to the u 's at any lead and lag. Thus the 

second and the third summands vanish as n , T  go to infinity. By Proposition 4.1, we get the result. 

The matrix function )(LN , where )(=)( LNALB nn , is left invertible (fundamentalness), that is, 

there exists an rq  square-summable filter )(LG  such that 
qILNLG =)()( . Then we have: 

Proposition 4.3 An estimator ntχ̂  of the common components ntχ  can be obtained 

asymptotically from the sequence ( )n ntK L x , where the square-summable filter )(LKn  is given by 

'ˆ)()(=)( nnn ALGLBLK . More precisely, we have: 
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Proof. Multiplying by 'ˆ
nA  on the left the equation: 
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From above, we see that the filters )(LKni  can be obtained by their empirical counterparts 

based on finite realizations of the form '

1= ( )T

n n nTx xx . Thus we can write: 
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From the above consistency results, it follows: 
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Finally, the process 











Ztnt :  admits a Wold representation for n  and T  sufficiently large. 

Since ntx  has a Wold representation as in (PA2), the process 
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5. Conclusion 

In this paper we have proved some convergence results concerning with stochastic variables 
which define our dynamic factor model. Our convergence results show the appropriate statistical 
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properties that qualify such a model. The factor model enables us to handle a large amount of 
information and then it avoids important limitations of structural VAR models. For this reason, it is an 
important tool to be used for economic and financia applications.
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