Theoretical and Practical Research in Economic Fields

Biannually

Volume VIII Issue 1(15) Summer 2017

ISSN 2068 - 7710 Journal **DOI** http://dx.doi.org/10.14505/tpref

is an advanced e-publisher struggling to bring further worldwide learning, knowledge and research. This transformative mission is realized through our commitment to innovation and enterprise, placing us at the cutting-edge of electronic delivery in a world that increasingly considers the dominance of

digital content and networked access not only to books and journals but to a whole range of other pedagogic services.

In both books and journals, ASERS Publishing is a hallmark of the finest scholarly publishing and cutting-edge research, maintained by our commitment to rigorous peer-review process.

Using pioneer developing technologies, ASERS Publishing keeps pace with the rapid changes in the e-publishing market.

ASERS Publishing is committed to providing customers with the information they want, when they want and how they want it. To serve this purpose, ASERS publishing offers digital Higher Education materials from its journals, courses and scientific books, in a proven way in order to engage the academic society from the entire world.

Volume VIII Issue 1(15) Summer, 2017

Editor in Chief

PhD Laura UNGUREANU Spiru Haret University, Romania

Editor

USA

Oil Price Shock and Economic Growth: Experience of PhD Ivan KITOV **CEMAC** Countries Russian Academy of Sciences, Russia Christophe Raoul BESSO 15 Editorial Advisory Board University de Yaoundé II, Cameroon Erick Patrick FEUBI PAMEN Monal Abdel-Baki University de Yaoundé II, Cameroon American University in Cairo, Egypt Mădălina Constantinescu The Economic Bubble and Its Measurement SpiruHaret University, Romania 2 ...19 Carmine GORGA Jean-Paul Gaertner The Somist Institute, Gloucester, Massachusetts, USA Ecole de Management de Strasbourg, France Trends in the Development of International Trade in 2011-Piotr Misztal The Jan Kochanowski University in Kielce, 2016, and Forecasts for 2017 Faculty of Management and Administration, ...24 3 Octavian Dan RĂDESCU Poland Free International University of Moldova **Russell Pittman** The County Center for Resource and Educational Assistance, Dolj, Romania International Technical Assistance Fuzziness and Statistics – Mathematical Models for Economic Analysis Group Antitrust Division, Uncertainty **Owat SUNANTA Rachel Price-Kreitz** Institute of Statistics and Mathematical Methods in Economics, Technische Ecole de Management de Strasbourg, 431 Universität Wien, Austria France **Reinhard VIERTL Rena Ravinder** Institute of Statistics and Mathematical Methods in Economics, Technische Politechnic of Namibia, Namibia Universität Wien. Austria Andv Stefănescu Policy on Balanced Regional Development in Macedonia -University of Craiova, Romania Goals, Challenges, Trends Borce TRENOVSKI Laura Gavrilă (formerly Stefănescu)47 5 Spiru Haret University, Romania Faculty of Economics, University Ss. Cyril and Methodius, Skopje, Macedonia Slagan PENEV Hans-Jürgen Weißbach President of FORUM-CSID, Macedonia University of Applied Sciences - Frankfurt Aggregation with Two-Member Households and Home am Main, Germany **Production** 673 **Aleksandar Vasilev** Aleksandar VASILEV American University in Bulgaria, Bulgaria

Contents:

American University in Bulgaria, Bulgaria

ASERS Publishing

http://www.asers.eu/asers-publishing **ISSN** 2068 - 7710 Journal's Issue DOI http://dx.doi.org/10.14505/tpref.v8.1(15).00

Call for Papers Volume VIII, Issue 2(16), Winter 2017 Theoretical and Practical Research in Economic Fields

Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, **Theoretical and Practical Research in Economic Fields** has been conceived and designed outside the realm of the traditional economics journal. It consists of concise communications that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.

Theoretical and Practical Research in Economic Fields publishes original articles in all branches of economics – theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area.

Journal promotes research that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in economics. The interaction between empirical work and economic policy is an important feature of the journal.

Theoretical and Practical Research in Economic Fields, starting with its first issue, it is indexed in <u>EconLit</u>, <u>RePEC</u>, <u>EBSCO</u>, <u>ProQuest</u>, <u>Cabell Directories</u> and <u>CEEOL</u> databases.

The primary aim of the Journal has been and remains the provision of a forum for the dissemination of a variety of international issues, empirical research and other matters of interest to researchers and practitioners in a diversity of subject areas linked to the broad theme of economic sciences.

All the papers will be first considered by the Editors for general relevance, originality and significance. If accepted for review, papers will then be subject to double blind peer review.

Invited manuscripts will be due till November 10th 2017, and shall go through the usual, albeit somewhat expedited, refereeing process.

Deadline for submission of proposals: 10th November 2017

Expected publication date:	December 2017
Website:	http://journals.aserspublishing.eu/tpref
E-mail:	tpref@aserspublishing.eu, asers.tpref@gmail.com

To prepare your paper for submission, please see full author guidelines in the following file: <u>TPREF_Full_Paper_Template.docx</u>, on our site.

DOI: http://dx.doi.org/10.14505/tpref.v8.1(15).01

OIL PRICE SHOCK AND ECONOMIC GROWTH: EXPERIENCE OF CEMAC COUNTRIES

Christophe Raoul BESSO University de Yaoundé II, Cameroon, <u>chritoppapou@yahoo.fr</u> Erick Patrick FEUBI PAMEN University de Yaoundé II, Cameroon, <u>armeric_63@yahoo.com</u>

Suggested Citation:

Besso, C. R., Feubi Pamen, E. P. (2017). Oil price shock and economic growth: experience of CEMAC countries, *Theoretical and Practical Research in Economic Field*, (Volume VIII, Summer 2017), 1(15): 5-18. DOI:10.14505/tpref.v8.1(15).01. Available from: <u>http://journals.aserspublishing.eu/tpref</u> Article's History:

Received March, 2017; *Revised* April, 2017; *Accepted* April, 2017. 2017. ASERS Publishing. All rights reserved.

Abstract:

The objective of this paper is to evaluate the impact of oil shocks on the growth rate of Growth Domestic Product (GDP) in CEMAC countries. We use a panel VAR model approach to the variation of the real GDP growth rate, oil price inflation rate and money supply between 2000 and 2015. Our main results show that CEMAC countries mostly depend on oil pension. Consequently, the analysis of impulsion response functions and the decomposition of variance show that, the shock on oil price negatively affects the growth rate of the GDP. We then suggest CEMAC countries to diversify their production, the destination of their exports and the sources of budgetary income or takings.

Keywords: oil shock; GDP; Panel VAR

JEL Classification : C23; F2; F43; F45.

1. Introduction

Economic activity in sub-Saharan Africa has slowed considerably for more than 20 years. It should be noted that this global analysis is marked by strong heterogeneity which appears from one country to another. Economic growth in the region fell to 3½ per cent in 2015, the lowest level in a decade.

Since 2014, the Central African Economic and Monetary Community (CEMAC) faces at the same time several types of shocks: securities (terrorist threats), politics (political crisis) and falling prices of natural resources. Concerning the persistent fall in the cost of natural resources, principally oil, started since June 2014, the cost of barrel passed from more than 100 US \$, to less than 50 US \$. Consequently, the economic growth curve in the zone follows a fall starting from 4.8 % in 2014 to 2.4 % in 2015, and in 2016, it is forecast at 1%.

2. Impact of falling oil prices on the activity of the CEMAC countries

The relation between oil price variables and the principal macroeconomic indicators was already the subject of numerous theoretical and empirical studies (Hamilton 1983, 1988, 1996, 2003, Rasche and Tatom 1981, Mork 1989, Hooker 1996). This dynamic interest at the same time academicians, policy decision-makers, the actors of finance and of the civil society since the first crisis of oil triggered in 1970. So, a series of dramatic events in the 1970s sent the price of crude oil over \$40 a barrel by the end of that decade, which would be over

\$100 a barrel at current prices. The price remained very volatile after the collapse in the 1980s but was still as low as \$20 a barrel at the end of 2001 (Hamilton 2009). After 2005, the barrel price remained above \$60 despite the strong volatility. But since the fall in August 2014, the barrel price dropped below \$60 in March 2015 and is maintained until now. The consequences of this strong decrease are dynamic for the exporting countries, in particular those of the CEMAC zone.

Figure 1. Evolution of barrel price of January 1990

This real decrease in barrel price influence the decisions of budgetary and monetary policies in function of the weight of the oil returns in the gross domestic product and the budgetary returns. It is in this light that Copinschi (2015) brings out the weight of the oil rent in the Gross domestic product and the budgetary returns of CEMAC countries. Thus, in Cameroon, it is observed that the returns from oil represents 10% of Gross Domestic Product, 20% of the budget and represent 50% of export returns for a production of 75 000 barrel/d. In Congo, oil returns represents 50% of Gross Domestic Product, 75% of budgetary returns and 80% of export returns for a production of 281 000 barrel/d. In Gabon, oil returns represent 45% of Gross Domestic Product, 50% of budgetary returns and 70% of export returns for a production of 236 000 barrel/d. In Equatorial Guinea, oil returns represent 85% of Gross National Product, 85% of budgetary returns and 90% of export returns for a production of 281 000 barrel/d.

	Country GDP/CEMAC's GDP	Country oil GDP/CEMA C's GDP	Country oil GDP/ country GDP	Country fiscal oil revenue/ country fiscal revenue	Country oil exports/country merchandise exports	Country external trade balance/ country GDP
Cameroon	38.7	1.8	4.7	14.1	38.5	-3.8
Central Africa Republic	2.2	0.0	0.0	0.0	0.0	-22.3
Chad	14.8	3.0	20.0	34.5	78.0	-15.5
Congo, Republic of	12.2	4.9	40.5	37.8	74.4	-14.6
Equatorial Guinea	12.8	3.8	30.0	81.6	81.4	41.7
Gabon	19.4	6.2	31.8	33.6	76.5	5.5
CEMAC	100	19.6	19.6	39.0	70.6	2.1

Table 1. Relative size of economies and importance of oil sector, 2015

Source: IMF Country Report N 16/290

Thus, in the IMF Country Report N 16//277, it is shown that CEMAC growth was subdued in 2015. It slowed to 1.6 percent, from 4.9 percent in 2014, because of reduced public investment and lower oil production. Growth is projected to be 1.9 percent in 2016, as oil production and investment remain sluggish. From 2017 onward, growth is expected to reach 3½ percent a year, as oil prices gradually recover, some one percentage point below the average growth level of the past decade of high oil prices. Growth of money and credit to the economy turned negative in 2015 for the first time in a decade, contributing to keeping inflation low. The regional fiscal and current account deficits grew to 6 and 9 percent of GDP in 2015, respectively, as oil export

Theoretical and Practical Research in Economic Field

proceeds fell by 32 percent. Continued low oil prices and high public expenditure will contribute to maintaining both deficits at about 6 and 8 percent of GDP in 2016, respectively.

Source: IMF country Report n 16/277

Figure 2. Real GDP Growth, 2013-2015

Faced with the fall in oil returns, all countries of the region have, in the course of the year 2015, strongly reduce their public expenditures on investment, what aggravates the slowing effect of the economy by impacting the non-oil activity sectors but of which the financing greatly depends on oil returns (construction, etc.). Gabon and Congo has announced the important adjustments in the public expenditures and Cameroon has to follow. But it is in Equatorial Guinea that the recadrage is most severe: the amount of public investments for the year 2015 will experience a fall of close to 60% with respect to the previous year. Besides, the fall in foreign investments in the oil sector of these countries will equally have a negative impact on the growth of this year.

In the same context, Besso and Chameni (2016) show that the CEMAC countries are highly exposed to exogenous trade shocks. The consequences of this situation are noted in the report of the International Monetary Fund on the regional economic outlook on Africa (October 2016). The report notes that commodity-exporting countries face serious economic tensions because of the fall in prices of these commodities on international markets. Thus, according to Table 2, the analysis of the instability of individual countries reveals several discrepancies. In the case of Cameroon, there was a reduction in instability from 7.53 between 1980 and 1990 to 0.82 between 2001 and 2010. The poor less performance was achieved by Chad and the Central African Republic

	(GDP Growth		Agricu	Iltural produc	ction		Export		
	1981 to 1990	1991 to 2000	2001 to 2010	1981 to 1990	1991 to 2000	2001 to 2010	1981 to 1990	1991 to 2000	2001 to 2010	
Cameroon	7.53	3.90	0.82	0.09	0.10		0.17	0.09	0.15	
Central Africa Republic	5.45	4.43	4.02	0.13	0.10	0.14	0.15	0.08	0.03	
Chad	9.33	7.64	9.81	0.19	0.22	0.35	0.33	0.22	0.35	
Congo, Republic of	9.40	3.72	3.08	0.06	0.07	0.04	0.27	0.17	0.19	
Gabon	8.01	4.59	3.14	0.06	0.15	0.05	0.17	0.17	0.26	
CEMAC	6,66	3,65	2,26	0,07	0,10	0,05	0,17	0,11	0,16	

Table 1. Indicator of instability in the economies of the CEMAC zone.

Source: Besso and Chameni (2016)

Regarding the instability of agricultural production, Congo obtained the best indicators. Gabon is performing well in the last decade, despite the high risks in previous decades. As for Chad and the Central

Africa republic, they consolidate their places in the most unstable countries of the zone.

The last indicator in this table is closely related to international trade, which is the instability of exports. At this level, while the Central Africa Republic, achieves the best performance in terms of stability, Chad consolidates its position as the most unstable country in the FCFA zone. Nevertheless, it is important to note that for this indicator, the countries of the CEMAC zone represented in this study present the signs of high instability.

Considering this background, we study the macroeconomic dynamics between economic output growth, domestic price level, money supply and oil price over a set of CEMAC countries. To evaluate the relative importance of these variables in the movements of other variables in both short and long run, Impulse Response Functions (IRFs) and Forecast Error Variance Decompositions (FEVDs) are used.

3. Literature review

3.1. World

Many authors concentrated on analyzing the oil price-macroeconomic relationship (Hamilton 1983, 1988, 1996, 2003, Rasche and Tatom 1981, Mork 1989, Hooker 1996). The main results of the paper may be summarized as follows. Firstly, the linear (symmetric) oil price specification reveals that changes in oil price stimulate GDP growth in the short term, but cause GDP to decline in the long term. Secondly, for non-linear (asymmetric) specifications, positive oil price shocks cause GDP to decline in the long term without experiencing growth in the short term. Another interesting finding is the response of output growth to negative (decreasing) oil price changes. Using negative oil price shock measures, GDP responds negatively in the short term, but eventually recovers although responses in the long term are not statistically significant (Aziz and Dahala 2015, Basnet and Upadhyaya 2015).

Ozturk (2015) analyzes the impact of oil price shocks on the selected macroeconomic variables in Turkey for the period of 1990Q1-2011Q4. Vector Auto regression (VAR) models and bivariate Granger causality tests are applied to determine the oil price shocks - macroeconomic relationship. The empirical findings shows that both symmetric and positive oil price shocks decrease industrial production, money supply, and imports while the negative oil price shocks increase imports.

Baumeister and Peersman (2013). Using time-varying BVARs, we find a substantial decline in the short run price elasticity of oil demand since the mid-1980s. This finding helps explain why an oil production shortfall of the same magnitude is associated with a stronger response of oil prices and more severe macroeconomic consequences over time, while a similar oil price increase is associated with smaller output effects. Oil supply shocks also account for a smaller fraction of real oil price variability in more recent periods, in contrast to oil demand shocks. The overall effects of oil supply disruptions on the US economy have, however, been modest.

Lutz (2008). A comparison of the effects of exogenous shocks to global crude oil production on seven major industrialized economies suggests a fair degree of similarity in the real growth responses. An exogenous oil supply disruption typically causes a temporary reduction in real GDP growth that is concentrated in the second year after the shock. Inflation responses are more varied. The median CPI inflation response peaks after three to four quarters. Exogenous oil supply disruptions need not generate sustained inflation or stagflation. Typical responses include a fall in the real wage, higher short-term interest rates, and a depreciating currency with respect to the dollar. Despite many qualitative similarities, there is strong statistical evidence that the responses to exogenous oil supply disruptions differ across G7 countries.

Aziz and Dahalan (2015) investigates the asymmetric effects of oil price shocks on real economic activities in ASEAN-5 from 1991 to 2014 using an unrestricted panel Vector Auto Regressive (VAR) method. Results from the impulse response function (IRFs) shows evidence of an asymmetric relationship between oil prices and economic activities. Specifically, positive oil price shock measures negatively affect output growth both in the short term and in the long term. For oil price decrease specifications, real output responds negatively in the short term before recovering to its pre-shock level in the long term. The variance decomposition analysis (VDCs) also exhibit differences between the effects of positive and negative oil price shocks on economic activities, supporting the evidence of asymmetric relationship obtained in the IRFs simulations.

Brémond *et al.* (2014) study the relations between the price of oil and a large dataset of commodity prices, relying on panel data settings. Using second generation panel co-integration tests, our findings show that the WTI and commodity prices are not linked in the long term. Nevertheless, considering our results in causality tests, they show that short-run relations exist, mainly from the price of crude oil to commodity prices. We thus implement a Panel VAR estimation with an impulse response function analysis. Two main conclusions emerge: (i) fast co-movements are highlighted, while (ii) market efficiency is emphasized.

Theoretical and Practical Research in Economic Field

Blanchard and Gali (2007) characterize the macroeconomic performance of a set of industrialized economies in the aftermath of the oil price shocks of the 1970s and of the last decade, focusing on the differences across episodes. We examine four different hypotheses for the mild effects on inflation and economic activity of the recent increase in the price of oil: (a) good luck (i.e. lack of concurrent adverse shocks), (b) smaller share of oil in production, (c) more flexible labour markets, and (d) improvements in monetary policy. We conclude that all four have played an important role.

Cologni and Manera (2009) using a Markov-switching analysis for the G-7 countries show that positive oil price changes, net oil price increases and oil price volatility tend to have a greater impact on output growth. Moreover, their analysis suggests that the role of oil shocks in explaining recessionary episodes have decreased over time. Finally, they conclude that oil shocks tend to be asymmetric.

Hamilton (2008) explores similarities and differences between the run-up of oil prices in 2007–08 and earlier oil price shocks, looking at what caused these price increases and what effects they had on the economy. Whereas previous oil price shocks were primarily caused by physical disruptions of supply, the price run-up of 2007–08 was caused by strong demand confronting stagnating world production. Although the causes were different, the consequences for the economy appear to have been similar to those observed in earlier episodes, with significant effects on consumption spending and purchases of domestic automobiles in particular. Absent those declines, it is unlikely that the period 2007Q4–2008Q3 would have been characterized as one of recession for the United States. This episode should thus be added to the list of U.S. recessions to which oil prices appear to have made a material contribution.

Mehrara and Mohaghegh (2011) study the macroeconomic dynamics in oil exporting countries using Panel VAR approach. On the basis of Impulse Response and Variance Decompositions analysis in a system included economic output, money supply, price index and oil price, we found that: (1) oil shocks are not necessarily inflationary; (2) money is not neutral in these countries; (3) money is the main cause of macroeconomic fluctuations; (4) oil shocks significantly affect economic output and money supply; (5) though oil price is highly driven by its own shocks, domestic shocks, particularly output and money shocks, can sizably affect oil price in the world market.

3.2. Africa

Nchor *et al.* (2016) analysis effect of oil price shocks on the Ghanian economy. This is achieved through the use of Vector Autoregressive (VAR) and Vector Error Correction (VECM) models. The variables considered in the study include: real oil price, real government expenditure, real industry value added, real imports, inflation and the real effective exchange rate. The study points out the asymmetric effects of oil price shocks; for instance, positive as well as negative oil price shocks on the macroeconomic variables used. The empirical findings of this study suggest that both linear and nonlinear oil price shocks have adverse impact on macroeconomic variables in Ghana. Positive oil price shocks are stronger than negative shocks with respect to government expenditure, inflation and the real effective exchange rate. Industry value added and imports have stronger responses to negative oil price shocks.

Sanchez (2011) analyzed the welfare effects of rising oil prices in oil-importing countries using dynamic Computable General Equilibrium (CGE) model on six oil-importing counties (Bangladesh, El Salvador, Kenya, Nicaragua, Tanzania, and Thailand) for the period 1990–2008. He argues that oil price rise has significant adverse impact on GDP with an average annual GDP loss varying from 0.1% for Tanzania to 20% for Kenya.

Akinleye and Ekpo (2013) examine the macroeconomic implications of symmetric and asymmetric oil price and oil revenue shocks in Nigeria, using the vector autoregressive (var) estimation technique. The paper finds that both positive and negative oil price shocks influence real government expenditure only in the long run rather than in the short run, while examining positive and negative shocks to external reserves revealed stronger implications for expenditure in the long run, with positive rather than negative oil price shocks having stronger short and long run effects on real GDP, and therefore triggering inflationary pressure and domestic currency depreciation as importation rises.

Apere and Ijomah (2013) investigates the time-series relationship on the impact of oil price volatility on macroeconomic activity in Nigeria using exponential generalized autoregressive conditional heteroskedasticity (EGARCH), impulse response function and lag-augmented VAR (LA-VAR) models. We found evidence that there is a unidirectional relationship exists between the interest rate, exchange rate and oil prices, with the direction from oil prices to both exchange rate and the interest rate. However, a significant relationship between oil prices and real GDP was not found.

Berument *et al.* (2010) in a study on Middle East and North African countries found the asymmetric effects of world oil price shocks on the GDP of Algeria, Iraq, Jordan, Kuwait, Oman, Qatar, Syria, Tunisia, and UAE to be positive and statistically significant, while positive but insignificant results were reported for Bahrain, Egypt, Lebanon, Morocco and Yemen.

4. Methodologies

To investigate the sources of macroeconomics fluctuations in CEMAC countries, specifically in Cameroon, Chad, Congo Republic, Gabon, and Equatorial Guinea, with Panel VAR model.

Times series Vector Auto-Regression (VAR) models originate in the macro econometrics literature as an alternative to multivariate simultaneous equation models (Sims 1980). In VAR models all variables are treated as endogenous and interdependent, both in a dynamic and in static sense, although in some relevant cases, exogenous variables could be included (Canova and Ciccarelli 2013). Panel VAR have the same structure as VAR models, in the sense that all variable are assumed to be endogenous and interdependent, but cross sectional dimension is added to the representation (Canova and Ciccarelli 2013).

Panel VAR have been used to address a variety of issues of interest to applied macroeconomists and policymakers. Bremond and al. (2014) studies the link between oil and Commodity prices with a panel VAR approach, Mehrara and Mohaghgeh (2011) studies the macroeconomic dynamics in oil exporting countries using Panel VAR approach.

4.1. Data

This paper uses four macroeconomics variables including real GDP growth, real oil prices, consumer index, and Supply money. Annually data from 2000 to 2015 is used for the CEMAC countries. All data gathered from World Development indicator (WDI) database, but oil price of INSEE (Institut National de la Statistique et des Etudes Economiques) in France.

4.2. Model specification

To explore the importance of heterogeneities, dynamics, and simultaneous determination of oil price, real GDP growth, consumer index, Money Supply. We begin with the following baseline panel autoregressive distributed lag (ARDL) specification (Bremond *et al.* 2014):

$$Y_{i,t} = \alpha_i + A(L)Y_{i,t} + \varepsilon_{i,t} \tag{1}$$

where i indicate the country, t runs from 1 to T, Y_{it} is the vector of endogenous variables, $\varepsilon_{i,t}$ is the vector of errors terms, α_i is the country-group specific intercept matrix, and A(L) is the matrix polynomial in the lag operator. The estimation is by generalized method of moment (GMM).

$$(Y_{it} = GGDP_{it}, oil \, prince_{it}, INFL_{it}, M2_{it})'$$
(2)

where I denote the individual dimension composed by CEMAC country, and t=2000, ...2015 the time. GGDP_{it}, oil price_{it}, INFL_{it}, and M2_{it}, denote real GDP growth, oil price, consumer index, Money Supply.

5. Results

5.1. Data description, Unit Root, stability tests and cointegration test

5.1.1 Unit Root

Annexes 1 provide the unit root regression results of the variables entered in the model. We find that oil price, gross domestic product growth and money supply are stationary in first difference. Inflation is stationary at level.

5.1.2 Stability test

All the eigen values lie inside the unit circle, Panel Var satisfies stability condition.

Ta	hl	Δ	2	S	tal	hil	lit.	1	est
I G		6	-		u		ncy		0.0

Eigenvalue		Modulus
Real	Imaginary	
.8506035	2951372	.9003512
.8506035	.2951372	.9003512
.4237051	0	.4237051
.0265475	0	.0265475

5.2. Panel VAR estimation

From our estimations, the GDP growth rate is negatively influenced by the price of oil and positively influenced by the level of inflation and money supply. Inflation is positively influenced by the price of oil and negatively by the money supply.

5.2.1. Impulse response function (IRF) Analysis

It is brought out of the functional analysis of impulse response that, the shocks on the prix of oil, on inflation and on money supply weakly contribute to fluctuations of the GDP growth rate. But, the shocks on the price of oil contributes more than the others. It is the main macroeconomic variable which influences the fluctuations of the GDP growth rate. From observations, the growth rate of NDP reacts to the shock as from the first periods. Later on, it starts stabilizing after the 5th period.

It should also be noticed that, the shock in oil price strongly contributes to the fluctuation of money supply. This is currently observed in the strong reduction of liquidity in the BEAC zone. Inflation is also influenced by the fluctuations of oil price but slightly less than the money supply.

5.2.2. Variance Decompositions

The analysis of the Variance Decompositions shows that at the first period, the fluctuation of the GDP growth rate do not depend only on the lag value of this growth rate and of the oil price. The other factors contribute to the fluctuations in growth rate as from the 2th period. For the rest of the periods, the contribution sum of inflation rates and money supply remains inferior to the contribution of oil price.

Conclusion

It comes from our previous analysis that, the CEMAC countries greatly depend on oil rent. In 2015, oil rent represented 4,7% of the GDP of Cameroon, 20% of the GDP of Chad, 40% of the GDP of Congo, 30% of the GDP of Equatorial Guinea and 31,8% of the GDP of Gabon. In a general manner, the oil rent represents 19,6% of the GDP of the CEMAC zone. Functional analysis of impulsional response and of the decomposition of the variance shows that, the shock on oil price, negatively affects the GDP growth rate. And this shock affects even more inflation and money supply. Moreover, the Variance Decompositions shows that, the shock on the oil price contributes more to fluctuations of the Gross Domestic Product than the inflation rate and money supply. In terms of policy recommendations, we then suggest, (i) to put in place a mechanism of sharing risk towards the exogenous shocks within CEMAC, (ii) reducing the dependency on the exportation of raw material, and densifying the intra CEMAC trade, (iii) diversifying the productions and the destinations of exportations, (iv) diversifying the sources of government revenue, (v) reducing heterogeneities in order to render monetary policies more efficient.

References

- [1] Aziz, A. I., and Dahalan, J. A. 2015. Oil Price Shocks and Macroeconomic Activites in Asean-5 Countries: a panel Var approach, *Eurasian Journal of Business and Economics*, 101-120, DOI: 10.17015/ejbe.2015.016.06. Available at: <u>http://www.ejbe.org/EJBE2015Vol08No16p101AZIZ-DAHALAN.pdf</u>
- [2] Basnet, H.C., and Upadhyaya, K.P. 2015. Impact of Oil Price Shocks on Output, Inflation and the Real Exchange Rate: Evidence from Selected ASEAN Countries," *Applied Economics*, 47(29): 3078-3091. Available at: <u>http://dx.doi.org/10.1080/00036846.2015.1011322</u>.
- [3] Baumeister, C., and Peersman, G. 2013. Time-Varying Effects of Oil Supply Shocks on the US Economy. *American Economic Journal*, 5(4): 1-28 (28).
- [4] Berument, M. H. Nildag Basak Ceylan, B., and Nukhet, D. 2010. The Impact of Oil Price Shocks on the Economic Growth of Selected mena Countries, *Energy Journal*, 31: 149-176 DOI: <u>10.5547/ISSN0195-6574-EJ-Vol31-No1-7</u>. Available at: <u>http://www.iaee.org/en/publications/ejarticle.aspx?id=2362</u>
- [5] Besso, C. R., and Nembua, C. C. 2016. Analyse de la vulnérabilité macroéconomique de la zone franc, MPRA Workind Paper.
- [6] Blanchard, O. J., and Gali, J. 2007. The Macroéconomic Effects of oil shocks: why are the 2000s so different from the 1970? International Dimensions of Monetary Policy, University of Chicago Press (February 2010), (pp 373-421).
- [7] Cologni, A., and Manera, M. 2008. Oil Prices, Inflation and Interest Rates in a Structural cointegrated VAR Model for G7 Countries. *Energy Policy*, 30: 856-888. Available at: <u>https://doi.org/10.1016/j.eneco.2006.11.001</u>
- [8] Copinschi, P. 2015. Impact de la baisse du prix du pétrole sur les pays producteurs d'Afrique équatoriale (Cameroun, Congo-Brazzaville, Gabon et Guinée équatoriale), Etude Prospective et Stratégique. DGRIS, 25 septembre 2015, N CHRONUS: 2013 1050 101741-EJ 1600018500.
- Hamilton, J. D. 1983. Oil and the Macroeconomic since World War II, *Journal of Political Economy*, 91: 228-248. Available at: <u>http://dx.doi.org/10.1086/261140</u>
- [10] Hamilton, J. D. 1988. A Neoclassical Model of Unemployment and the Business Cycle, The Journal of Political Economy, 96: 593-617. Available at: <u>http://dx.doi.org/10.1086/261553</u>
- [11] Hamilton, J. D. 1996. This Is What Happened To The Oil Price-Macroeconomic Relationship, Journal of Monetary Economics, 38: 215-220. Available at: <u>http://dx.doi.org/10.1016/S0304-3932(96)01282-2</u>
- [12] Hamilton, J. D. 2009. Causes and Consequences of the Oil Shock of 2007-08, NBER Working Paper, N 15002.
- [13] IMF Country Report, Article IV consultation-press release; staff report; and statement by the executive director for the republic of Equatorial Guinea. IMF Country Report N°16/341, November 2016.

- [14] IMF Country Report, Central African Economic and Monetary Community. IMF Country Report N° 16/290, September 2016.
- [15] IMF Country Report, Central African economic And Monetary Community (CEMAC). IMF Country Report N° 16/277, August 2016.
- [16] IMF Country Report, Gabon. IMF Country Report N° 16/87. March 2016.
- [17] IMF Country Report, Third and Fourth Reviews under the extended credit facility arrangement and request for waivers of nonobservance of performance criteria, augmentation of access, extension of the current arrangement, and rephrasing of disbuesements-press release; staff report; and statement by the executive director for Chad. IMF Country Report N° 16/3664, November 2016.
- [18] IMF, Afrique Subsaharienne: une croissance à deux vitesses. Perspectives économiques régionales, Etudes économigues et financières, octobre 2016.
- [19] Lutz, K. 2008. A comparison of the effects of exogenous oil supply shocks on output and inflation in the G7 countries. *Journal of the European Economics Association*, 6: 78-121. DOI: 10.1162/JEEA.2008.6.1.78
- [20] Mork, K. A. 1989. Oil and the Macroeconomic When Prices Go Up and Down: An Extension of Hamilton's Results, *Journal of Political Economy*, 97: 740-744.
- [21] Nchor, D., Klepac, V., and Adamec, V., 2016. Effects of Oil Price Shocks on the Ghanaian Economy, Acta Universitat is Agriculturae et Silviculture Mendeliana e Brunensis, n° 64(1): 315-324. Available at: <u>http://dx.doi.org/10.11118/actaun201664010315</u>
- [22] Ozturk, F. 2015. Oil Price Shocks-Macro Economy relationship in turkey. Asian Economic and Financial Review, 5: 846-857. DOI:10.18488/journalaefr/2015.5.5/102.5.846.857
- [23] Rasche, R.H. and Tatom, J. A. 1981. Energy Price Shocks, Aggregate Supply and Monetary Policy: The Theory and International Evidence, *Carnegie-Rochester Conference Series on Public Policy*, 14: 9-93.
- [24] ThankGod O. Apere, and Ijomah, M.A. 2013. Macroeconomic Impact of Oil Price Lecels and Volatility in Nigeria, International Journal of Academic Research in Economics and Management Sciences, 2(4): 15-25, DOI: 10.6007/IJAREMS/v2-i4/48. Available at: <u>http://dx.doi.org/10.6007/IJAREMS/v2-i4/48</u>

Annexes

Annex 1: Unit root test

Panel unit root test: Summary								
Series: D(GGDP)								
Date: 12/20/16 Time: 15:01								
Sample: 2000 2015								
Exogenous variables: Individualeffects, individuallinea	ar trends							
User-specifiedlags: 1								
Newey-West automatic bandwidth selection and Bart	ett kernel							
Balanced observations for each test								
			Cross-					
Method	Statistic	Prob.**	sections	Obs				
Null: Unit root (assumes common unit root process)								
Levin, Lin & Chu t*	-4.35244	0.0000	5	65				
Breitung t-stat	-6.34317	0.0000	5	60				
Null: Unit root (assumes individual unit root process)								
Im, Pesaran and Shin W-stat	-4.76021	0.0000	5	65				
ADF - Fisher Chi-square	37.9061	0.0000	5	65				
PP - Fisher Chi-square	89.3865	0.0000	5	70				
** Probabilities for Fisher tests are computed using an	** Probabilities for Fisher tests are computed using an asymptotic Chi							
-square distribution. All other tests assume asymptotic	c normality.							

Panel unit root test: Summary					
Series: INFL					
Date: 12/20/16 Time: 20:00					
Sample: 2000 2015					
Exogenous variables: Individualeffects					
User-specifiedlags: 1					
Newey-West automatic bandwidth selection and Bartle	ett kernel				
			Cross-		
Method	Statistic	Prob.**	sections	Obs	
Null: Unit root (assumes common unit root process)	<u> </u>				
Levin, Lin & Chu t*	-4.12108	0.0000	5	67	
Null: Unit root (assumes individual unit root process)					
Im, Pesaran and Shin W-stat	-3.79980	0.0001	5	67	
ADF - Fisher Chi-square	32.9844	0.0003	5	67	
PP - Fisher Chi-square	55.8292	0.0000	5	72	
** Probabilities for Fisher tests are computed using an	asymptotic Chi				
-square distribution. All other tests assume asymp	ototic normality.				

Panel unit root test: Summary						
Series: D(OIL_PRICE)						
Date: 12/20/16 Time: 16:09						
Sample: 2000 2015						
Exogenous variables: None						
User-specifiedlags: 1						
Newey-West automatic bandwidth selection and E	Bartlett kernel					
Balanced observations for each test						
			Cross-			
Method	Statistic	Prob.**	sections	Obs		
Null: Unit root (assumes common unit root proces	s)					
Levin, Lin & Chu t*	-4.44397	0.0000	5	65		
Null: Unit root (assumes individual unit root proce	ss)					
ADF - Fisher Chi-square	28.5843	0.0015	5	65		
PP - Fisher Chi-square	46.5007	0.0000	5	70		
** Probabilities for Fisher tests are computed usin	g an asymptotic Ch	ni				
-square distribution. All other tests assume asymp	ototic normality.					

Panel unit root test: Summary							
Series: D(M2)							
Date: 12/20/16 Time: 16:05							
Sample: 2000 2015							
Exogenous variables: Individualeffects, individua	llinear trends						
User-specifiedlags: 1							
Newey-West automatic bandwidth selection and	Bartlett kernel						
Balanced observations for each test							
			Cross-				
Method	Statistic	Prob.**	sections	Obs			
Null: Unit root (assumes common unit root proce	ss)	•	<u>.</u>	-			
Levin, Lin & Chu t*	-6.14226	0.0000	5	65			
Breitung t-stat	-1.86444	0.0311	5	60			
Null: Unit root (assumes individual unit root proce	ess)						
Im, Pesaran and Shin W-stat	-4.54554	0.0000	5	65			
ADF - Fisher Chi-square	38.1602	0.0000	5	65			
PP - Fisher Chi-square	77.7335	0.0000	5	70			
** Probabilities for Fisher tests are computed usir	ng an asymptotic Cl	ni					
-square distribution. All other tests assume asym	ptotic normality.						

Equation/Excluded		chi2	Df	Prob
Oilprice	GGDP	2,418	1	0,12
	INFL	8,947	1	0,003
	M2	2,161	1	0,142
	ALL	17	3	0,001
GGDP	oilprice	1,024	1	0,311
	INFL	0,213	1	0,644
	M2	0,356	1	0,551
	ALL	1,352	3	0,717
INFL	oilprice	1,132	1	0,287
	GGDP	0,934	1	0,334
	m2	1,503	1	0,22
	ALL	3,105	3	0,389
M2	oilprice	7,568	1	0,006
	GGDP	0,053	1	0,818
	INFL	1,011	1	0,315
	ALL	8,305	3	0,04

Annex 2: Panel VAR-Granger causality Wald test

Annex 3: Panel Vector Autoregression (GMM estimation)

	L1.	Coef.	Std. Err.	Z	P>z	[95% Co	onf. Interval]
oilprice	Oilprice	.991073	.1817967	5,45	0.000	.6347581	1.347388
	GGDP	2978365	.191518	-1,56	0.120	6732048	.0775318
	INFL	-1.999249	.6683857	-2,56	0.003	-3.30926	6892367
	M2	-2.722157	1.851696	-1,47	0.142	-6.351414	.9071008
GGDP	Oilprice	050563	.0499574	-1,01	0.311	1484777	.0473517
	GGDP	.4635038	.1740421	2,66	0.008	.1223876	.8046201
	INFL	.1162443	.2518354	0,46	0.644	377344	.6098326
	M2	.2344472	.3928493	0,6	0.551	5355233	1.004418
INFL	Oilprice	.0411436	.0386783	1,06	0.287	0346644	.1169517
	GGDP	.038541	.0398854	0,97	0.334	039633	.1167149
	INFL	1103765	.1762883	-0,63	0.531	4558953	.2351422
	M2	4259941	.3474316	-1,23	0.220	-1.106947	.2549592
M2	Oilprice	.0430068	.0156337	2,75	0.006	.0123654	.0736483
	GGDP	.0055645	.0242345	0,23	0.818	0419343	.0530632
	INFL	.0597116	.0593917	1,01	0.315	0566939	.1761172
	M2	.8072593	.1405489	5,74	0.000	.5317885	1.08273

Theoretical and Practical Research in Economic Field

Annex 4: Response variable and forecast horizon

			Response v	ariable and	forecast horizo	on		
				impuls	e variable			
		Oil price	GGE)P	INFL		M2	
oil price	0		0	C)	0		0
	1		1	C)	0		0
	2	.8978778	.005	3333	.0745763		.0222126	
	3	.8346815	.013	3794	.1019746		.0499645	
	4	.7846813	.019	3035	.1162055		.0798097	
	5	.7457001	.022	6544	.1235611		.1080845	
	6	.7190945	.023	9403	.1260716		.1308936	
	7	.7057981	.023	9276	.1252134		.1450609	
	8	.7039962	.023	4525	.1227213		.1498299	
	9	.7089102	.023	1763	.1203021		.1476115	
	10	.7150543	.023	3783	.1190008		.1425666	
GGDP	0		0	0)	0		0
	1	.013128	.986	872		0		0
	2	.0329328	.963	387	.002255		.0014251	
	3	.05029	.938	7494	.0060088		.0049518	
	4	.0602804	.920	4852	.0094463		.009788	
	5	.0637276	.909	8835	.0116871		.0147018	
	6	.0638682	.904	7521	.0127054		.0186744	
	7	.0638477	.902	0173	.0129293		.0212058	
	8	.0654776	.899	2737	.0128903		.0223584	
	9	.0689943	.895	4341	.0129823		.0225893	
	10	.073538	.890	632	.0133591		.0224709	
INFL	0		0	0)	0		0
	1	.0007111	.009	9993	.9892896			0
	2	.0415465	.024	0811	.906401		.0279715	
	3	.0478949	.024	275	.877414		.0504161	
	4	.0470781	.023	9207	.8639327		.0650685	
	5	.0530775	.023	6785	.8513259		.071918	
	6	.069074	.023	5808	.8344397		.0729055	
	7	.0909836	.023	7664	.8141103		.0711397	
	8	.1124566	.024	2415	.7939152		.0693868	
	9	.1288868	.024	8659	.7771369		.0691103	
	10	.1387492	.025	4625	.7653168		.0704714	
M2	0		0	0)	0		0
	1	.0119416	.078	5761	.0037555		.9057269	
	2	.0975508	.061	4546	.021074		.8199206	
	3	.3235916	.049	9264	.015244		.611238	
	4	.5124594	.044	1101	.0273839		.4160466	
	5	.6129952	.042	8104	.0467568		.2974375	
	6	.6516562	.043	7013	.0646899		2399526	

Volume VIII, Issue 1(15), Summer 2017

7	.6570356	.045243	.0785435	.2191778	
8	.6470363	.0466494	.0880173	.2182971	
9	.6324363	.0475542	.0934933	.226516	
10	.6199761	.0478455	.0956858	.2364927	

Web:<u>www.asers.eu</u> URL: <u>http://www.asers.eu/publishing/index.php/tpref</u> E-mail: <u>asers@asers.eu</u> <u>tpref@asers.eu</u> ISSN 2068 – 7710 Journal DOI: http://dx.doi.org/10.14505/tpref Journal'sIssue DOI: http://dx.doi.org/10.14505/tpref.v8.1(15).00